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Closed solution to the Baker-Campbell-Hausdorff problem: Exact effective Hamiltonian
theory for analysis of nuclear-magnetic-resonance experiments
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Laboratory for Biomolecular NMR Spectroscopy, Department of Molecular and Structural Biology, University of Aarhus,

DK-8000 Aarhus C, Denmark
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A closed solution to the Baker-Campbell-Hausdorff problem is described. The solution, which is based on
the Cayley-Hamilton theorem, allows the entanglement between exponential operators to be described by an
exact finite series expansion. Addressing specifically the special unitary Lie groups SU(2), SU(3), and SU(4),
we derive expansion formulas for the entangled exponential operator as well as for the effective Hamiltonian
describing the net evolution of the quantum system. The capability of our so-called exact effective Hamiltonian
theory for analytical and numerical analysis is demonstrated by evaluation of multiple-pulse methods within
liquid- and solid-state nuclear-magnetic-resonance spectroscopy. The examples include composite pulses for
inversion, decoupling, and dipolar recoupling, as well as coherence-order- and spin-state-selective double- to
single-quantum conversion, homonuclear dipolar decoupling, finite rf excitation for quadrupolar nuclei, het-
eronuclear coherence transfer, and gates for quantum computation.
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I. INTRODUCTION

In many branches of modern physics, it is of substan
interest to describe the effect of complex time-depend
processes in terms of a single operator that is represent
of the overall evolution of the system. The resulting opera
may provide direct physical insight into the evolution of t
system, which is useful for evaluation and systematic des
of complex experiments. Considering unitary evolution
quantum physics as an attractive example, relevant, e.g
coherent spectroscopy@1–4# and quantum computing@5–7#,
information about the effective Hamiltonian or propaga
may require entanglement of the product of noncommut
exponential operators into a single unitary operator with
same effect. Depending on the time dependence of the
derlying Hamiltonians, the effective Hamiltonian may be d
rived using the Baker-Campbell-Hausdorff~BCH! @8# or
Magnus@9# expansion@or combinations of these, such as t
semicontinuous BCH~SCBCH! expansion@10## which allow
the entangled operator to be expressed in terms of an infi
series of commutators between the operators subject to
tanglement@11#. Through systematic ordering of the expa
sion elements of the effective Hamiltonian according to si
entanglements of this type@10,12# have, for example, proved
to be an indispensable tool for the evaluation and system
design of multiple-pulse experiments in nuclear-magne
resonance~NMR! spectroscopy ever since the pioneeri
work by Haeberlen and Waugh@1,12–17#.

Despite its proven success, it is relevant to consider so
difficulties and limitations of effective Hamiltonian theor
based on the BCH, Magnus, and SCBCH expansions. F
the quality and usefulness of the effective Hamiltonian cr
cally rely on the convergence of the commutator series
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concentrate the most important dynamics into the first f
orders. Under favorable conditions this may be accomplis
by transforming the description into an appropriate inter
tion frame, removing dominant terms from the external m
nipulations not necessarily being important for evaluat
purposes. This strategy may be applied in several steps
vided the relevant parts of the Hamiltonian are sufficien
well separated in terms of magnitude. Unfortunately, ho
ever, this does not cover the most general case where
magnitudes of various of the desired, undesired, relev
and irrelevant terms may be similar. An example could
solid-state NMR of powder samples, where the orientat
dependence may scale the impact of anisotropic interact
continuously from zero up to a size significantly larger th
the available rf field strengths and sample spinning frequ
cies @13–15#. Another case could be rf irradiation subject
resonance offsets, which in cases relevant in practice ma
larger than the available or desired rf field strengths. Seco
even for quite simple experiments it may be difficult to ca
culate the effective Hamiltonian to high order due to t
complexity of the involved commutators along with the ne
for time-ordered integration which is complicated in cases
discontinuous time dependence@10#. In this context we note
that very often the most complicating time dependence
introduced by the transformation into an interaction fram
with the aim of stimulating faster convergence. These co
plications are unfortunate considering the recognized va
of high-order evaluations in systematic design of pulse
quences that efficiently eliminate undesired components
the internal Hamiltonian@10,16–25#. Third, considering the
difficulties in achieving appropriate convergence and deri
tion of high-order terms of the effective Hamiltonian, it
typical to assist the analytical evaluations by numerica
exact calculations based on the Hamiltonian in the norm
rotating frame rather than in the interaction frame co
structed to simplify the analytical evaluations. Although
match between the two descriptions may be obtained by
forming the analytical evaluations stroboscopically at t
:
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THOMAS S. UNTIDT AND NIELS CHR. NIELSEN PHYSICAL REVIEW E65 021108
points where the interaction and normal rotating frames
incide, this often leaves the scientist with an undesirable
between analytical formulas providing physical insight w
low precision and digitalization and numerical simulatio
providing high precision but no direct physical insight.

In this paper we address the above-mentioned probl
and introduce a closed solution to the BCH problem in
normal rotating frame. The solution is based on the Cayl
Hamilton theorem@26,27#, which allows reformulation of the
infinite BCH expansion into a finite series expansion of e
ponential operators as recently demonstrated in relatio
the special unitary~SU! and general linear~GL! groups@28–
31#. In this paper this analysis is extended to provide
analytically exact description of the exponent to characte
the effective fields associated with the entangled opera
This forms the basis for our so-called exact effective Ham
tonian theory~EEHT!. Furthermore, with specific formula
derived for SU~2!, SU~3!, and SU~4!, this work extends ear
lier attempts using a related quaternion algebra formal
@32# to describe the effective fields encountered in the SU~2!
case@33,34#.

II. THEORY

In this section we derive the basic formulas required
analytical entanglement of the product of two exponen
operators as a finite power series depending on the expon
of the two operators. This involves expansion of the in
vidual exponential operators into a finite power series us
the Cayley-Hamilton theorem followed by coupling of th
two series into an overall propagator. By expansion of
logarithm to the entangled operator we derive the effec
Hamiltonian that is representative for the overall evolutio

A. Expansion of the exponential operator

Confronted with the standard definition of the exponen
operator as an infinite series

eiA5 (
k50

`
~ iA !k

k!
~1!

and the interest in a closed solution to the BCH entanglem
problem@8#

eiC5eiAeiB, ~2!

it is desirable to establish an alternative definition of t
exponential containing a finite number of terms. This may
accomplished using the Cayley-Hamilton theorem@26#,
which states that anyn3n matrix A is a solution to its own
characteristic polynomial, i.e.,

p~A!5An1cn21An211•••1c1A1c0150 ~3!

with the characteristic polynomial defined as

p~l!5det~A2l1!5ln1cn21ln211•••1c1l1c0 .
~4!
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This implies that it is possible to express matricesAm for any
powerm>n in terms of the matrices$1,A, . . . ,An21% with
coefficients determined by the characteristic polynom
This result is of great interest for the decomposition in E
~2!, but also in more general terms considering the la
number of mappings used in quantum physics which ty
cally are characterized via their infinite power expansio
Using the Cayley-Hamilton theorem these mappings may
reduced to closed series of finite order. In the following s
tions we shall take advantage of the expansion in Eq.~3! to
express the exponential and logarithmic mappings in te
of the eigenvalues for the operators in their arguments.

Using Eq.~3!, the matrix exponential in Eq.~1! may be
rewritten as@30#

eiAt5x0~ t !11 ix1~ t !A2x2~ t !A21•••1 i n21xn21~ t !An21,
~5!

where we explicitly emphasized the time~or rotation angle,
depending on the units ofA) dependence in the exponenti
to facilitate practical application typically involving dynam
cal propagators. Under appropriate consideration of the m
tiplicity ~m! of the eigenvalues (l) of iA, the coefficients
take the form

xj~ t !5 f j ,1~l1 ,m1!el1t1•••1 f j ,n~ln ,mn!elnt. ~6!

The coefficients to the exponentials in Eq.~6! may be ex-
pressed as

f j ,i~l i ,mi !5aj ,i ,01aj ,i ,1t1•••1aj ,i ,mi21tmi21 ~7!

with the aj ,i ,k coefficients obtained by solution of th
coupled equations

x0~0!51,x08~0!50,x09~0!50, . . . ,x0
(n21)~0!50,

x1~0!50,x18~0!51,x19~0!50, . . . ,x1
(n21)~0!50, ~8!

A

xn21~0!50,xn218 ~0!50,xn219 ~0!50, . . . ,xn21
(n21)~0!51

defining the initial conditions for the problem@30#.
To illustrate the simplicity of the procedure for expansi

of an exponential operator, we considereitI x for a two-level
system. The roots to the characteristic polynomial fori I x ,

p~l!5l21 ilTr $I x%2detI x5l21
1

4
, I x5

1

2 F0 1

1 0G ,
~9!

may be identified as the nondegenerate eigenvaluesl15 i /2
and l252 i /2. Using the Cayley-Hamilton theorem, it i
straightforward to derive known identities of the typeI x

2

51/4. With the eigenvalues established, the general exp
sions for thexi(t) coefficients are

x0~ t !5a0,1,0e
it /21a0,2,0e

2 i t /2,

x1~ t !5a1,1,0e
it /21a1,2,0e

2 i t /2. ~10!
8-2
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CLOSED SOLUTION TO THE BAKER-CAMPBELL- . . . PHYSICAL REVIEW E 65 021108
Considering the initial conditions in Eq.~8!, the coefficients
need to bea0,1,05a0,2,05

1
2 anda1,1,052a1,2,052 i , leading

to

eitI x5cos
t

2
112i sin

t

2
I x ~11!

in agreement with previous findings based on an eigenve
or infinite series approach.

B. Coupling of two exponential operators

Using the finite series expansion, it is possible to deriv
closed solution to the coupling of the two exponentials in E
~2! for which the traditional solution depends on an infin
commutator series

eiAeiB5eiA1 iB2[A,B]/22 i (†A,[A,B] ‡1†[A,B],B‡)/121••• ~12!

known as the BCH expansion@8#. Using Eq. ~5! the en-
tanglement may be written

eiAeiB5~x0
A11 ix1

AA2x2
AA21•••1 i n21xn21

A An21!

3~x0
B11 ix1

BB2x2
BB21•••1 i n21xn21

B Bn21!,

~13!

with the definitions x0
A5x0

A(1), . . . ,xn21
A 5xn21

A (1) and
similarly for thexi

B coefficients. This expression has the o
vious advantage of being closed and thereby applicable
exact description of the quantum dynamics. With the num
of terms increasing byn2, this advantage applies in particula
for smaller values ofn, where it proves possible to establis
quite simple expressions for the exponential product and
exponentC @cf. Eq.~2!#. We note that evaluation of the prod
uct in Eq.~13! becomes particularly simple in cases whereA
andB are related through a similarity transformation. In th
case the eigenvalues and thereby thexi coefficients become
identical forA andB.

As an example, we address the coupling of two expon
tials in su(2) for which the exponentsA and B are related
through a similarity transformation. Using Eq.~13! with n
51 andxi5xi

A(1)5xi
B(1), this leads to

eiAeiB5x0
211 ix0x1~A1B!2x1

2AB, ~14!

which compares favorably with the infinite series approa
in Eq. ~12!. Considering that su(2) is spanned by a thre
dimensional basis, full generality is maintained by consid
ing propagators of the type

eiA5ei (axI x1ayI y1azI z), eiB5ei (bxI x1byI y1bzI z). ~15!

The eigenvalues ofi (axI x1ayI y1azI z) may be determined
as

l56 i
Aax

21ay
21az

2

2
[6 id, ~16!

leading to the coefficientsx05cosd and x15(sind)/d, and
thereby
02110
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eiA5cosd11 i
sind

d
~axI x1ayI y1azI z!. ~17!

Finally, using Eq.~14! we arrive at the closed expression f
the entanglement of two operators related through a sim
ity transformation:

eiAeiB5H cos2d2
sin2d

4d2
~axbx1ayby1azbz!J 1

1 i
sind cosd

d
$~ax1bx!I x1~ay1by!I y

1~az1bz!I z%2 i
sin2d

d2
$~aybz2azby!I x

1~azbx2axbz!I y1~axby2aybx!I z%. ~18!

C. The entangled Hamiltonian

While the entangled propagator may be useful for obta
ing analytical formulas for the overall propagator and t
propagated density operator, physical insight into the eff
tive fields of the experiment requires determination of t
exponent. Relying on the traditional BCH expansion, t
information may be obtained through the exponent in
right-hand side of Eq.~12!. As above, however, this approac
has the distinct disadvantage of an infinite commutator se
description which in practice often calls for an undesira
compromise between accuracy and complexity.

Using the Cayley-Hamilton theorem, it is possible to d
rive a finite series description of the effective Hamiltonia
This may be achieved on the basis of the infinite expans
of the logarithmic mapping

ln~eiAeiB!52 (
k51

`
1

k
Xk, ~19!

with

X512eiAeiB. ~20!

By expanding theXm elements withm>n (n denotes the
dimension of the Lie algebra, or physically the number
energy levels! in terms of lower-order elements using th
Cayley-Hamilton theorem followed by substitution of the e
ponential product in Eq.~20! by the finite series expansion i
Eq. ~13!, the logarithmic function may be expanded as

ln~eiAeiB!5g011g1X1•••1gn21Xn21. ~21!

The gi coefficients may be determined from the eigenvalu
of X as described below for the cases of su(2), su(3), and
su(4).This provides the desired finite series expansion of
effective Hamiltonian for the entangled operation, whi
henceforth will be referred to as exact effective Hamiltoni
theory to emphasize its role as an exact alternative to
very popular, but approximate, BCH expansion as well
average Hamiltonian theory~AHT! so far used alone or in
combination with SCBCH to evaluate the effective fields
8-3
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THOMAS S. UNTIDT AND NIELS CHR. NIELSEN PHYSICAL REVIEW E65 021108
entangled operations. Finally, we should note that the a
lytical expansions in Eqs.~13! and ~21! form an attractive
alternative to a direct evaluation of their matrix represen
tions, which typically will lead to much less transparent fo
mulas and will in addition to eigenvalues also require est
lishment of the eigenvectors for the operators involved.

1. The su(2) case

For a two-level system, the operatorX may be expanded
as

X25a0X1b01 ~22!

with the coefficients defined via the characteristic polyn
mial to X,

p~l!5~l2l1!~l2l2!5l22a0l2b0 ~23!

using a05l11l2 and b052l1l2, with l1 and l2 being
the eigenvalues ofX. Thus, using Eqs.~13! and ~20! we
obtain

ln~eiAeiB!5g011g1X

5~g01g1!12g1~x0
A11 ix1

AA!~x0
B11 ix1

BB!.

~24!

The gi5gi(l1 ,l2) coefficients may be derived by com
parison of the general expressions in Eqs.~19! and~24!. This
is most conveniently accomplished using

X21 i5aiX1bi1, ~25!

which along with Eq.~22! leads to the recursion relation
ai 115aia01bi and bi 115aib0 with i .0. Equipped with
these definitions, Eq.~19! may be rewritten as

ln~eiAeiB!52S 11 (
k50

`
1

k12
akDX2S (

k50

`
1

k12
bkD 1,

~26!

with g1 and g0 identified as the coefficients ofX and 1,
respectively. With the definitionm5l12l2, it can be shown
that the coefficientsak andbk are subject to the relations

mak5l1
k122l2

k12 , mbk52l2l1
k121l1l2

k12 .
~27!

Thus, using the definitions ofg0 and g1 in Eq. ~26!, we
obtain

mg05 (
k50

`
l1

k12l22l1l2
k12

k12

52l2ln~12l1!1l1ln~12l2!, ~28!

mg152S ~l12l2!1 (
k50

`
l1

k122l2
k12

k12 D
5 ln~12l1!2 ln~12l2!, ~29!
02110
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which upon insertion into Eq.~24! leads to the desired gen
eral finite series expression for the effective field of the e
tangled operator.

2. The su(3) case

Using the same approach for a three-level system we
tain

X31 i5aiX
21biX1ci1 ~30!

with a05l11l21l3 , b052l1l22l1l32l2l3, and c0
5l1l2l3 defined via

p~l!5~l2l1!~l2l2!~l2l3!5l32a0l22b0l2c0
~31!

and the coefficients fori .0 determined by the recurrenc
formulasai 115aia01bi , bi 115aib01ci , andci 115aic0.
As in the su(2) case, the logarithmic function may be e
pressed by the expansions

ln~eiAeiB!5g011g1X1g2X2

52S 1

3
c01 (

k51

`
1

k13
ckD 1

2S 11 (
k50

`
1

k13
bkDX

2S 1

2
1 (

k50

`
1

k13
akDX2 ~32!

with the coefficients related to the eigenvalues ofX by

mak5l1
k13~l22l3!1l2

k13~l32l1!1l3
k13~l12l2!,

~33!

mbk5l1
k13~l3

22l2
2!1l2

k13~l1
22l3

2!1l3
k13~l2

22l1
2!,

~34!

mck5l1
k13~l2

2l32l2l3
2!1l2

k13~l1l3
22l1

2l3!

1l3
k13~l1

2l22l1l2
2!, ~35!

with m5(l12l2)(l12l3)(l22l3). This allows thegi co-
efficients to be determined from Eq.~32!, i.e.,

mg05~l2
2l32l3

2l2!ln~12l1!1~l3
2l12l1

2l3!ln~12l2!

1~l1
2l22l1l2

2!ln~12l3!, ~36!

mg15~l3
22l2

2!ln~12l1!1~l1
22l3

2!ln~12l2!

1~l2
22l1

2!ln~12l3!, ~37!

mg25~l22l3!ln~12l1!1~l32l1!ln~12l2!

1~l12l2!ln~12l3!, ~38!

which in combination with Eqs.~13!, ~20!, and ~32! enable
expression of the effective field in an exact finite series
pansion. This applies in the typical case with nondegene
8-4
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CLOSED SOLUTION TO THE BAKER-CAMPBELL- . . . PHYSICAL REVIEW E 65 021108
eigenvalues. The corresponding formulas applying for
special case where two of the three eigenvalues are deg
ate are compiled in the Appendix.

3. The su(4) case

In a analogous manner, the su(4) expansion may be
rived using

X41 i5aiX
31biX

21ciX1di1 ~39!

with the coefficients related to the characteristic polynom

p~l!5l42a0l32b0l22c0l2d0 ~40!

using a05l11l21l31l4 , b052l1l22l1l32l1l4
2l2l32l2l42l3l4 , c05l1l2l31l1l2l41l1l3l4
1l2l3l4 , d052l1l2l3l4, as well asai 115aia01bi ,
bi 115aib01ci , ci 115aic01di , anddi 115aid0 for i .0.
The infinite and finite expansions for the logarithmic fun
tions may be expressed as

ln~eiAeiB!5g011g1X1g2X21g3X3

52S (
k50

`
1

k14
dkD 12S 11 (

k50

`
1

k14
ckDX

2S 1

2
1 (

k50

`
1

k14
bkDX2

2S 1

3
1 (

k50

`
1

k14
akDX3, ~41!

where thegi coefficients in the general nondegenerate c
take the form

mg05 ln~12l1!@l2
3~2l3

2l41l3l4
2!1l3

3~2l4
2l21l2

2l4!

1l4
3~2l2

2l31l2l3
2!#1 ln~12l2!@l1

3~l4l3
22l3l4

2!

1l3
3~l1l4

22l4l1
2!1l4

3~l3l1
22l3

2l1!#1 ln~12l3!

3@l1
3~2l4l2

21l4
2l2!1l2

3~2l1l4
21l1

2l4!

1l4
3~l1l2

22l1
2l2!#1 ln@12l4!@l1

3~2l2l3
21l3l2

2!

1l2
3~2l1

2l31l1l3
2!1l3

3~l2l1
22l2

2l1!#, ~42!

mg15 ln~12l1!@l2
3~l3

22l4
2!1l3

3~l4
22l2

2!1l4
3~l2

22l3
2!#

1 ln~12l2!@l1
3~2l3

21l4
2!1l3

3~2l4
21l1

2!

1l4
3~2l1

21l3
2!#1 ln~12l3!@l1

3~l2
22l4

2!

1l2
3~l4

22l1
2!1l4

3~2l2
21l1

2!#1 ln~12l4!

3@l1
3~l3

22l2
2!1l2

3~l1
22l3

2!1l3
3~2l1

21l2
2!#, ~43!

mg25 ln~12l1!@l2
3~2l31l4!1l3

3~2l41l2!

1l4
3~2l21l3!#1 ln~12l2!@l1

3~l32l4!

1l3
3~l42l1!1l4

3~l12l3!#1 ln~12l3!
02110
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3~2l21l4!1l2

3~2l41l1!1l4
3~l22l1!#1 ln~1

2l4!@l1
3~2l31l2!1l2

3~2l11l3!

1l3
3~l12l2!#, ~44!

mg35 ln~12l1!@l2
2~l32l4!1l3

2~l42l2!1l4
2~l22l3!#

1 ln~12l2!@l1
2~2l31l4!1l3

2~2l41l1!

1l4
2~2l11l3!#1 ln~12l3!@l1

2~l22l4!

1l2
2~l42l1!1l4

2~2l21l1!#1 ln~12l4!

3@l1
2~l32l2!1l2

2~l12l3!1l3
2~2l11l2!# ~45!

using m5(l12l2)(l12l3)(l12l4)(l22l3)(l2
2l4)(l32l4). Specific solutions for the three cases of d
generate eigenvalues~i.e.,l15l2 , l15l2, andl35l4, and
l15l25l3 degeneration! are given in the Appendix.

D. General principles for experiment design revisited

The EEHT formalism may provide exact analytical i
sight into the working of entangled operations, which may
very useful for evaluation and systematic design of exp
mental methods. In this regard the EEHT expansion m
serve as a powerful alternative to the commonly used B
and Magnus expansion based average Hamiltonian
SCBCH methods. Thus, before proceeding to specific
amples it appears relevant to comment on the relation
design principles from these earlier methods to the exact
malism. These principles include in particular the so-cal
2m11 rule@10,21# and the use of reflection symmetric puls
sequence elements to eliminate all even order@35# terms in
the effective Hamiltonian@10,18,19#.

The first thing to notice is, obviously, that the order co
cept and accompanying convergence principles have
meaning in relation to an exact expansion. It may, howev
be relevant to use the exact entanglement of two propaga
as an alternative to the SCBCH formulation in cases wh
an ordered expansion exists for the individual operato
Without looking at the details of the expansions, it is evide
that the same relations apply for the two formalisms ind
pendently of the reference frame being an interaction fra
in the former case or the laboratory frame in the latter. T
follows from the interaction frame equation of motion

dŨ

dt
52 iH̃ Ũ ~46!

with the interaction frame propagator (Ũ) related to the labo-
ratory frame propagator~U! as

U5UTŨ, ~47!

whereUT denotes a unitary propagator mediating transf
mation between the two frames. With the assumption thatUT
is exact and does not contain the interaction that we wan
find an order expansion for, any ordered expansion of
Hamiltonian applying in the interaction frame applie
8-5
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equally well in the laboratory frame. This is ascribed to t
fact that the coupling ofUT and U ,̃ e.g., conducted by the
BCH expansion, will not change the original ordering inŨ,
with the consequence that the 2m11 and reflection symme
try principles can be adopted directly into the formalism d
scribed here.

In more specific terms, the 2m11 rule states that, if a
unitary transformationeiA can be represented by an effecti
Hamiltonian where the firstm orders vanish and this expo
nential is coupled with another propagatoreiB fulfilling the
same condition, then all terms of the effective Hamiltoni
up to order 2m11 can be established by simple sums
terms of the same order for the two blocks individually.
qualitatively identify this rule within the EEHT formalism
we consider two propagators that are defined through
order expansions of the exponents

eiA5eiS i 51
` HA

( i )t, eiB5eiS i 51
` HB

( i )t ~48!

with the assumption thatHA
(1)5HB

(1)5•••5HA
(m)5HB

(m)50.
Taking su(2) as a particularly simple case, it is evident t
the operational part of the effective Hamiltonian for the e
tangled operation, as represented by Eq.~24!, contains linear
A andB terms and bilinearAB terms. The former terms hav
nonvanishing terms only of order larger thanm11 while the
latter have nonvanishing terms of order larger than 2m12.

III. APPLICATIONS TO NMR SPECTROSCOPY

In this section we demonstrate how the EEHT formali
may be applied to analyze pulse sequences commonly
in liquid- and solid-state NMR. This involves the establis
ment of analytically exact formulas, which may be used
rectly for numerical simulations and analytical evaluation,
may be Taylor expanded to provide more easily access
physical insight. This is valuable for analysis of experimen
results, error analysis, and systematic design of optim
pulse sequences for practical applications. The first serie
examples address composite pulses in the su(2) case
focus on inversion @36#, so-called WALTZ decoupling
@17,37#, and chemical shift truncation in the basic buildin
blocks of the sevenfold-symmetric C7@38# and the more
recent permuation offset stabilized C7~POST-C7! @24# pulse
sequences proposed for dipolar recoupling in solid-s
NMR. The second series of examples address pulse
quences for pairs of spins 1/2 leading to a four-level sys
which may be analyzed directly in su(4) or in many prac
cally relevant cases transformed into a su(2) or su(3)
scription in a coupled representation. Thus, the first two
amples, ~i! INADEQUATE CR @39–41# ~i.e., incredible
natural abundance double quantum transfer composite r
cusing! pulse sequence for coherence-order and spin-s
selective (COS3) conversion of double-quantum coheren
into single-quantum coherence and~ii ! magic-sandwich
~MS! @42# and the high-order-truncating MSHOT-3@22,23#
pulse sequences for homonuclear dipolar decoupling, b
concern su(3). Thedecomposition of a su(4) problem int
two su(2) problems is addressed by analysis of the effec
finite rf pulses on spinI 53/2 nuclei influenced by large qua
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drupolar couplings. Finally, the su(4) case is demonstra
by INEPT ~i.e., insensitive nuclei enhanced by polarizati
transfer! type heteronuclear coherence transfer@43,44# and
gates for quantum computation@45#.

At this point it is relevant to note that the overall proc
dure for establishment of the effective Hamiltonian, inclu
ing determination of the entangled operator and finding
gi coefficients from theX operator, may readily be imple
mented in symbolic mathematics programs such
MATHEMATICA @46#.

A. Composite pulse sequence elements for two-level systems
su„2…

Considering that the following examples address o
resonance compensation in composite pulses of the
90x-180y-90x , 90x-1802x-270x , 360x-3602x , and
902x-360x-2702x , which with one exception are all com
posed of three rotations involving one or more 906x rota-
tions, it proves useful to calculatea priori the influence of an
offset-perturbed propagator

U5e2 i (axI x1azI z) ~49!

on the three orthogonal basis operatorsI x , I y , andI z . Here
ax may denote a nominal flip angle of the pulse, e.g.,ax
5v r f tp/25p/2 with v r f being the angular nutation fre
quency of the rf pulse with a durationtp/2 corresponding to
a p/2 rotation. Likewise,az may represent the offset rotatio
angle depending on the resonance offset angular freque
(vo) and the pulse duration, e.g.,az5votp/2 . The transfor-
mations may be written

UI xU
†5~122az

2q2
2!I x1azq1I y12axazq2

2I z , ~50!

UI yU
†52azq1I x1q3I y1axq1I z , ~51!

UI zU
†52axazq2

2I x2axq1I y1~12ax
2q2

2!I z , ~52!

with q15sin(Aax
21az

2)/Aax
21az

2, q25sin(Aax
21az

2/2)/
Aax

21az
2, andq35cos(Aax

21az
2).

These relations will be used extensively in the followin
since they reduce the entanglements to coupling of
propagators followed by a similarity transformation of th
type given in Eqs.~50!–~52!. The latter is possible since
Ue2 iH tU†5e2 iUHU †t.

1. A composite inversion pulse

The offset dependence of theC121590x-180y-90x com-
posite inversion pulse may be analyzed using the propag

e2 i (pI x12azI z)/2e2 i (pI y12azI z)e2 i (pI x12azI z)/2

5Ue2 i (pI y12azI z)e2 i (pI x12azI z)U†, ~53!

with U defined in Eq.~49! usingax5p/2 andaz related to
the resonance offset and the rf field strength asaz5votp/2
5vop/(2v r f ). Here and henceforth the subscripts to t
pulse sequence elementsC and the Hamiltonians reflect th
8-6
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pulses involved in units ofp/2 flip angles and with roman
and italic numbers indicating thex and y phases, respec
tively.

With n52 the two central exponential operators in E
~53! may be evaluated using Eqs.~5!–~8!,

e2 i (pI q12azI z)5c112 i2s1~pI q12azI z!, ~54!

where q5x,y, s15sin(A4az
21p2/2)/A4az

21p2, and c1

5cos(A4az
21p2/2). This allowsX for the two-pulse elemen

to be expressed as

X512e2 i (pI y12azI z)e2 i (pI x12azI z)

5~8az
21p2!s1

211 ip~4azs1
21s2!~ I x1I y!

1 i ~22p2s1
214azs2!I z ~55!

with s25sin(A4az
21p2)/A4az

21p2. Using this expression
the eigenvalues ofX may be calculated as

l5~8az
21p2!s1

2

6
1

2
A22p2~4azs1

21s2!224~p2s1
222azs2!2, ~56!

which may be inserted into Eqs.~28! and ~29! to obtain the
g0 and g1 coefficients for the entangled effective Ham
tonian:

2 iH 22
e f ft2p5 ln~e2 i (pI y12azI z)e2 i (pI x12azI z)!5g011g1X,

~57!

of the offset-perturbed 180y-180x pulse sequence eleme
(t2p52p/v r f ). Finally, using Eq.~53! the effective Hamil-
tonian for the 90x-180y-90x composite pulse may be writte

2 iH 121
e f ft2p5g011g1UXU†5bx

121I x1by
121I y1bz

121I z ,
~58!

where the coefficients readily may be established using E
~50!–~52!.

Although Eq.~58! gives a relatively simple and analyt
cally exact expression for the effective Hamiltonian of t
composite pulse, it may be useful to extract physical insi
from a standard Taylor expansion aroundaz50, which up to
eighth order leads to

bx
1215

i ~41p!az
2

p
1

i ~32216p1p2!az
4

p4

2
2i ~4802192p127p216p31p4!az

6

3p6
1O~az

8!,

~59!
02110
.

s.

t

by
12152 ip2

2i ~42p!az
2

p2
1

i ~96228p14p21p3!az
4

2p4

2
2i ~4882150p26p223p3!az

6

3p6
1O~az

8!, ~60!

bz
121522iaz1

2i ~2816p1p2!az
3

p3

1
i ~160260p16p21p3!az

5

p5

2
4i ~9682342p121p213p31p4!az

7

3p7
1O~az

8!.

~61!

The effective Hamiltonian may be compared directly w
the Hamiltonian of a standard 180y inversion pulse

2 iH 2
e f ftp52 i ~pI y12azI z!, ~62!

either directly from the formula or graphically as in Fig. 1.
the graphical representation, the exact values ofbx , by , and
bz for the effective rotation angles of the pulse are plott
directly againstvo /v r f 5 2az /p or in a normalized fashion
in a three-dimensional~3D! spherical plot. We note that th
coefficients of the effective Hamiltonian~rather than the ef-
fective rotation! may be obtained by scaling with the invers
pulse duration, which effectively halves the coefficients
the composite pulse relative to the single-pulse case. In
representations, it is evident that the improved off-resona
compensation for the desiredpy rotation is obtained by re-
duction of theI z contribution to the effective Hamiltonian
This is achieved at the expense of the introduction of a sy
metric I x rotation and an antisymmetric destructive contrib
tion to theI y rotation. For small off-resonance effects the
contributions are not problematic since phase errors do
influence the inverted signal component.

2. A WALTZ decoupling element

The propagator for the WALTZ-typeC12̄3590x-1802x
2270x element@17,37# may be written

e2 i (pI x12azI z)/2e2 i (2pI x12azI z)e2 i (3pI x16azI z)/2

5Ue2 i (2pI x12azI z)e2 i (2pI x14azI z)U†, ~63!

for which we derive

e2 i (2pI x12azI z)5c111 i2s1~pI x22azI z!, ~64!

e2 i (2pI x14azI z)5~2c1
221!12 is2~2pI x14azI z! ~65!

using Eqs.~5!–~8!. This leads to

X512e2 i (2pI x12azI z)e2 i (2pI x14azI z)5~12p2c224az
2c3!1

12ips1I x18iazps1s2I y14iazs3I z ~66!
8-7
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FIG. 1. Graphs showing the
offset dependence for thebi coef-
ficients of the effective Hamil-
tonian 2 iH e f ft5bxI x1byI y

1bzI z , for the ~a! 180y (bi

5ai ,t5tp), ~b! 90x-180y-90x (t
5t2p), and ~c! 90x-1802x-270x

(t5t3p) inversion pulses. The
solid, dashed, and dot-dashe
lines ~left column! represent the
imaginary components ofbx , by ,
and bz , respectively, while the
dotted line represents the norm
ubu5Aubxu21ubyu21ubzu2. The
spherical trajectories~right col-
umn! represent the imaginary par
of bi /ubu as a function ofvo /v r f

ranging from21.5 to 1.5.
r
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to
ed
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for the two-pulse element usingc25c1 /(4az
21p2), c3

5cos(3A4az
21p2/2)/(4az

21p2), and s3

5sin(3A4az
21p2/2)/A4az

21p2. The eigenvalues forX are

l5124az
2c32c2p26A2p2s1

2~1116az
2s2

2!24az
2s3

2,
~67!

which allows straightforward calculation ofg0 andg1 using
Eqs. ~28! and ~29!. The effective Hamiltonian of theC12̄3
WALTZ element may be expressed as

2 iH 12̄3
e f f

t3p5U ln~e2 i (2pI x12azI z)e2 i (2pI x14azI z)!U†

5g011g1UXU†5bx
12̄3I x1by

12̄3I y1bz
12̄3I z

~68!

with t3p 5 3p/v r f .
The analytical expression in Eq.~68! may readily be ex-

panded using Eqs.~50!–~52! to provide exact formulas fo
numerical simulations and analytical evaluations. It may
ternatively be instructive to examine the coefficients

bx
12̄352 ip1

8iaz
2

p
2

8iaz
4

p2
1

8i ~24415p!az
6

p5
1O~az

8!,

~69!
02110
l-

by
12̄3524iaz1

8iaz
3

p2
1

2i ~521p2!az
5

p4
1

8i ~213417p2!az
7

p6

1O~az
8! ~70!

bz
12̄3522iaz1

4i ~41p!az
3

p2
2

20iaz
5

p3

2
2i ~1056160p1p3!az

7

3p6
1O~az

8! ~71!

resulting from an eighth order Taylor expansion of Eq.~68!.
On the basis of these formulas, it is straightforward

rationalize why the WALTZ element is more compensat
with respect to off-resonance effects than the compo
pulse~and the standardp pulse! described above. The effec
tive Hamiltonian of the composite pulse contains aI z com-
ponent which is linearly dependent on the offset and aI x
component with a quadratic offset dependence. This imp
that even for small offsets the effective rotation axis is turn
away from the transverse plane towardI z with the result of
decreasing inversion capacity. For WALTZ, the undesir
longitudinal component is still linearly dependent on the o
set but this is partly compensated by an even more domin
linear contribution toI y . The latter component, though bein
8-8
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orthogonal to the desiredI x rotation, tends to keep the effec
tive rotation axis close to the transverse plane, leading
more broadbanded inversion. This aspect is clearly evid
from the 3D plots in Fig. 1 comparing the imaginary part
the normalized bi /Aubxu21ubyu21ubzu2 coefficients (i
5x,y,z) for the three discussed inversion pulses.

3. C7 and POST-C7 dipolar recoupling elements

To proceed with a solid-state NMR example, we consi
the C44̄ and C1̄43̄ building blocks of the C7@38# and
POST-C7@24# pulse sequences, respectively, used for bro
band g-encoded@47# dipolar recoupling in magic-angle
spinning NMR. These elements serve to eliminate undes
effects from resonance offsets while allowing dipolar reco
pling upon concatenation into a C7 multiple-pulse cyc
Thus, to illustrate how the EEHT formalism can be used
systematic design of sequences with efficient offset comp
sation we calculate analytically the effective Hamiltonia
for the C4 , C44̄ , andC1̄43̄ elements in su~2! followed by a
comparative evaluation.

For the basicC45360x building block the propagator@Eq.
~17!# and the effective Hamiltonian are straightforwardly d
rived as

e2 i (62pI x14azI z)5c411 is4~62pI x14azI z!, ~72!

2 iH 2
e f ftp52 i ~2pI x14azI z! ~73!

with s45sin(A4az
21p2)/A4az

21p2 and c4

5cos(A4az
21p2). Using Eq.~18! for the C44̄5360x-3602x

element we obtain

X512e2 i (2pI x14azI z)e2 i (22pI x14azI z)

58az
2s4

2128iazps4
2I y18iazs4c4I z . ~74!

The eigenvalues forX are given by

l58az
2s4

264azs4A2ps4
22c4

2, ~75!

which defines theg0 andg1 coefficients@Eqs.~28! and~29!#
for the effective Hamiltonian

2 iH 44̄
e f f

t4p5g011g1X5by
44̄I y1bz

44̄I z ~76!

with

by
44̄528iazps4

2g1 , bz
44̄58iazs4c4g1 , ~77!

andt4p54p/v r f . The robustness of theC44̄ pulse sequence
element toward resonance offsets may alternatively be ev
ated to high order using the Taylor expansions

by
44̄5

i32az
5

p3
2

i192az
7

p5
2

i32~28714p2!az
9

3p7
1O~az

10!,

~78!
02110
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bz
44̄5

2 i16az
3

p2
1

i48az
5

p4
1

i32~21514p2!az
7

3p6

2
i16~235124p2!az

9

p8
1O~az

10!. ~79!

We note that by insertion ofaz5pvo /(2v r f ) and scaling by
( i t4p)21 the low-order components are identical to tho
obtained earlier to fourth order@24# using the SCBCH ex-
pansion @10#. This demonstrates the general feature t
EEHT followed by a straightforward Taylor expansion m
provide an easy route to high-order evaluations, which m
be quite tedious to establish using commutator based ex
sions such as SCBCH, potentially in combination with t
high-order Magnus expansion formula of Bialynicki-Biru
et al. @48#.

Recently, we demonstrated that the off-resonance c
pensation may be improved considerably by replacing
C44̄ element by the perturbed three-pulseC1̄43̄
5902x-360x-2702x element leading to the POST-C7 s
quence@24#. The advantage of this replacement appears
rectly from the formulas given above, which reveal that t
prefactor to the dominantI z term is associated with an offse
dependence that is two orders of magnitude larger than
for the dominantI y term. Considering that the longitudina
components are not eliminated by thez rotations involved in
the sevenfold symmetric C7 pulse sequence@24,38#, it may
be beneficial to interchange theI y and I z terms by a290°
x-phase rotation of the above propagator or a permuta
leading to theC1̄43̄ sequence element.~We note that the even
more intuitive 290° y-phase rotation, which would allow
elimination of both I z and I y components, is unattractiv
since it changes the scaling factor of the dipolar interact
to a very low value.! In practice, this operation is also influ
enced by off-resonance effects, implying that the propaga
for the two pulse sequence elements are related through

U 1̄43̄5UPU44̄UP
† , UP5e2 i [ 2(p/2)I x1azI z] . ~80!

Thus, theC1̄43̄ POST-C7 element may be characterized
the effective Hamiltonian

2 iH 1̄43̄
e f f

t4p5UPH44̄
e f f

UP
†t4p

5g011g1UPXUP
† 5bx

1̄43̄I x1by
1̄43̄I y1bz

1̄43̄I z

~81!

which may readily be expanded using theX eigenvalues for
the C44̄ element and the transformation formulas in Eq
~50!–~52!.

The Taylor expanded coefficients

bx
1̄43̄5

232iaz
4

p3
1

32i ~71p!az
6

p5
1

64i ~257212p14p2!az
8

3p7

1O~az
10!, ~82!
8-9
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by
1̄43̄5

16iaz
3

p2
2

80iaz
5

p4
2

8i ~213217p2!az
7

3p6

1
8i ~25581113p2!az

9

3p8
1O~az

10!, ~83!

bz
1̄43̄5

216i ~41p!az
5

p4
1

64i ~712p!az
7

p6

1
8i ~29122282p164p215p3!az

9

3p8
1O~az

10!

~84!

clearly reveal the improved broadband behavior of the p
muted element, since the longitudinal component now
pends on the offset to fifth order rather than third order
was the case for the originalC44̄ element. It is also eviden
that this improvement is achieved at the expense of increa
offset dependence onbx andby , which, however, is unprob
lematic since these components are eliminated to high o
by the C7 supercycle. These aspects become clearly ev
from Fig. 2 showing thebi coefficients as functions of th
offset parametervo /v r f 52az /p. Comparison of the plots
for C7 and POST-C7 clearly demonstrates the change of
residual offset dependence of the effective Hamiltonian fr
being longitudinal dominated to being transverse domina
and thereby amenable toz-rotational decoupling upon con
catenation into the C7 supercycle.

As stated earlier, one of the most powerful strategies
the design of pulse sequences with improved error comp
sation is to concatenate symmetry related elements to f
reflection symmetric pulse sequences that eliminate all e
order terms in the effective Hamiltonian. This effect follow
directly from the AHT formalism and, as discussed abo
also the EEHT formalism. To give a practical example,
may be relevant to ask the following question: Based
EEHT, why is theC44̄ element more offset compensated th
the C44 element and what is the origin of this? From t
EEHT analysis it is evident that theI z contribution fromX
amounts to 8iazs4c4 for both sequence elements@see Eq.
~77!#. This implies that the different offset compensation h
to be associated with differences in theg1 coefficients. That
this indeed is the case appears clearly from Fig. 2~c!, show-
ing significantly smallerg1 values forC44̄ than forC44. This
is, obviously, related to differences in the eigenvalues for
relevantX operators that determineg1. ForC44̄ the eigenval-
ues are closer to zero as compared withC44 as can be seen
from Fig. 2~d!.

B. Four-level problems analyzed in su„2…, su„3…, and su„4…

Obviously, NMR pulse sequences are not restricted to
simple su~2! single-spin-1/2 case although a large number
sequences, for example, used for excitation, inversion,
decoupling, may be described within this system. To dem
strate the power of the EEHT approach for deriving ex
finite series descriptions of the propagators and Hamilton
02110
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for two-spin-1/2 and single-spin-3/2 four-level systems,
address five examples, among which the three first upon
propriate transformation may be analyzed in su~2! or su~3!,
while the latter two require analysis in su~4!.

1. Composite INADEQUATE CR refocusing described in su(3)

As the first example, we demonstrate how the effect
field of a quite complex spin-pair liquid-state NMR expe
ment may be described using EEHT. Specifically, we c
sider the coherence- and spin-state-selective (COS3) double-
to single-quantum transfer mixing sequence of the most

FIG. 2. Graphical representation of~a! the imaginary part ofbz ,
~b! the transverse normAubxu21ubyu2, ~c! the exact2g1 coeffi-
cients, and~d! the norm of the eigenvalues for theC44 ~dashed line!,
C44̄ ~dot-dashed line!, andC1̄43̄ ~solid line! elements of the C7 and
POST-C7 dipolar recoupling pulse sequences. It is noted thatC44̄

andC1̄43̄ behave identically in~c! and ~d!.
8-10
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cent variant of the liquid-state NMR INADEQUATE CR ex
periment@Fig. 3~a!# @39,40#, derived using analytical unitary
bounds on quantum dynamics@41#. For this experiment we
need to couple three exponential operators constituting
overall propagator for the mixing sequence@41#

UCR5eium(2I ySz12I zSy)e2 ip(2I xSy12I ySx)/6eium(I y1Sy),
~85!

where um5tan21A2. This is most conveniently accom
plished in a symmetrized basis reflecting invariance tow
permutation of the two spins@40,49# obtained using

Asym5TAT†, T5F 1 0 0 0

0 q q 0

0 0 0 1

0 q 2q 0

G , ~86!

whereq51/A2 andT represents the unitary transformatio
relating the standard Zeeman and the symmetrized bas
this so-called strong-coupling basis, the relevant mixing p
cess may be treated as a su~3! problem@40#.

As before, the first step is to establish analytical expr
sions for the individual exponential operators on the basi
the eigenvalues for the exponent. The eigenvalues
ium(2I ySz12I zSy) and ium(I y1Sy) in su~3! both equal$0,
2 ium ,ium%, leading to the expansion coefficients

x051, x15A2

3

1

um
, x25

1

um
2 S 12

1

A3
D . ~87!

Likewise, the eigenvalues for2 ip(2I xSy12I ySx)/6 are$0,
2 ip/6,ip/6%, leading to

x051, x15
3

p
, x252

18~A322!

p2
. ~88!

FIG. 3. Timing schemes for the~a! INADEQUATE CR mixing
@t51/(4J) and c52um1p/2 with um5tan21A2#, ~b! MS @t
5p/(2v r f )#, and ~c! MSHOT-3 pulse sequences. For MSHOT
the basic building block is the MS sequence; however, the phas
the rf field is shifted in each individual block according to the val
of f.
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Thus, using Eq.~5! the three relevant exponential oper
tors may be written as

eium(2I ySz12I zSy)5
31A3

6
11 iA2

3
~2I ySz12I zSy!

2S 12
1

A3
D 2I xSx , ~89!

e2 ip(2I xSy12I ySx)/65
21A3

4
12

i

2
~2I xSy12I ySx!

2
1

2
~22A3!2I zSz , ~90!

eium(I y1Sy)5
31A3

6
11 iA2

3
~ I y1Sy!2S 12

1

A3
D 2I ySy ,

~91!

which through multiplication gives a closed analytical e
pression for the propagator of the INADEQUATE CR e
periment in the Zeeman base.

To find the effective Hamiltonian for the full mixing se
quence, we shall further need

X512UCR

5
1

2
12

i

A2
~ I y1Sy!1

1

2
~ I z1Sz!1I xSx1I ySy

2 iA2~ I ySz1I zSy!, ~92!

X252 iA2~ I y1Sy12I zSy12I ySz!. ~93!

The eigenvalues ofX in su~3! may be calculated to be$0,1
2 i ,11 i %, which using Eqs.~36!–~38! leads tog050, g1
50, andg252p/4.

Upon insertion into Eq.~21! extended to coupling of three
propagators, we find the following effective Hamiltonian f
the INADEQUATE CR mixing sequence:

2 iH e f ftCR5 ln~UCR!

52
p

4
X2

5 i
A2p

4
~ I y1Sy12I zSy12I ySz!

5
A2p

4 F 0 1 1 0

21 0 0 0

21 0 0 0

0 0 0 0

G , ~94!

wheretCR51/J is the overall duration of the pulse sequenc
depending on the homonuclearJ coupling required to ac-

of
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complish the bilinear rotations in Eq.~85!. Using Eq.~86!,
this effective Hamiltonian is readily identified as a select
p pulse,

~2 iH e f ftCR!sym5 ipI y
1,2, ~95!

influencing the two lowest energy levels in the su~3! base as
discussed in Ref.@40#.

2. MS and MSHOT-3 homonuclear dipolar decoupling
described in su(3)

Using a similar approach, it is also straightforward to e
tablish the effective Hamiltonians for the magic-sandw
@42# and the higher-order truncating MSHOT-3@22# pulse
sequences@Figs. 3~b! and 3~c!# earlier proposed for homo
nuclear dipolar decoupling in solid-state NMR.

For a homonuclear dipolar coupled two-spin-1/2 syste
the action of the MS pulse sequence may be described by
four propagators

U15e2 i2aDA6T20, U25e2 ip(I y1Sy)/2,

U35e2 i [2p(I x1Sx)14aDA6T2,0] ,

U45e2 i [ 22p(I x1Sx)14aDA6T2,0] , ~96!

using the irreducible spherical tensor operatorT2,0

5(2I zSz2I xSx2I ySy)/A6 and whereaD5pvD /(2v r f ) ex-
e

-

ic
lo

02110
-

,
he

presses the dependency on the angular frequencies fo
dipolar coupling (vD) and the rf field amplitude. The homo
nuclear dipolar coupling Hamiltonian is defined asHD

5A6vDT2,0. The four propagators reflect free precessi
under the influence ofHD , an ideal (p/2)y bracketing pulse
~a typical simplifying assumption@42,22#, which is not re-
quired but used to avoid excessively long expressions!, and
two nonideal 2p pulses of phasex and2x under the influ-
ence ofHD in accordance with Fig. 3~b!.

The individual propagators may be calculated using E
~5!–~7!, and the operatorX for the concatenated sequen
established as

X512U1U2U4U3U2
†U1 . ~97!

Upon transformation into the coupled basis using Eq.~86!,
the eigenvalues forX are derived as

l150, l2,35
18aD

2 sa
273A2aDsaA29aD

2 28p229aD
2 c2a

a2

~98!

with the definitions a5A9aD
2 14p2, sx5sinx, and cx

5cosx. With the eigenvalues determined, it is straightfo
ward to determine the effective Hamiltonian for the MS s
quence using Eq.~32! and Eqs.~36!–~38!, i.e.,
2 iH e f ftMS5
@l2

2 ln~12l3!2l3
2 ln~12l2!#X2@l3 ln~12l2!2l2 ln~12l3!#X2

l2l3~l22l3!
~99!
ose

of
by
rac-

ces

Eq.
re
using tMS512t56p/v r f . In terms of standard irreducibl
spherical tensor operators@22#, the exact effective Hamil-
tonian takes the form

2 iH e f ftMS5bT2,2

MST2,21bT2,22

MS T2,22 ~100!

with T2,625 1
2 I 1

6I 2
6 ,

bT2,2

MS

5
2A2aDa2@ ln~12l2!2 ln~12l3!#sa~ iaca12psa!

saaDa2A29aD
2 28p229aD

2 c2a

,

~101!

and bT2,22

MS 5(2bT2,2

MS)* where * denotes complex conjuga

tion.
While the exact expressions in Eqs.~100! and ~101! are

valuable for exact calculations, it is easier to extract phys
insight into the decoupling performance by making a Tay
expansion aroundaD50. To tenth order this leads to
al
r

bT2,2

MS5
227iaD

3

2p2
2

243~23i 14p!aD
5

32p4

1
729@215i 14~914ip!p#aD

7

256p6

1
6561$105i 14p@28718p~29i 12p!#%aD

9

8192p8

1O~az
10!. ~102!

We note that the lowest-order terms are identical to th
derived earlier using the SCBCH expansion@10#.

As recently demonstrated, the decoupling performance
the MS pulse sequence may be improved significantly
concatenating two phase alternated MS sequences or in p
tice more efficiently by concatenating three MS sequen
mutually phase shifted by 2p/3, leading to the so-called
MSHOT-3 pulse sequence in Fig. 3~c! @22#. The rationale
behind these pulse sequences becomes evident from
~100!, revealing that the residual dipolar coupling terms a
8-12
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proportional toT2,62 and thereby may be eliminated by th
proposedz rotations. More insight may be obtained using t
EEHT formalism, which based on the formulas derived
the MS sequence leads to the following effective Ham
tonian for the MSHOT-3 sequence:

2 iH e f ftMSHOT-35bT1,0

MSHOT-3T1,01bT2,0

MSHOT-3T2,0

1bT2,2

MSHOT-3T2,21bT2,22

MSHOT-3T2,22

~103!

with T1,05I z1Sz and bT2,22

MSHOT-35(2bT2,2

MSHOT-3)* . In this

case the exact formulas are quite long, so we restrict
selves to presentation of the coefficients in a tenth order T
lor expansion aroundaD50, i.e.,

bT1,0

MSHOT-35
i729A3

32p4
aD

6 2
19683iA3

256p6
aD

8 1O~aD
10!,

~104!

bT2,2

MSHOT-352
19683~ i 1A3!

64p6
aD

9 1O~aD
10!, ~105!

bT2,0

MSHOT-35O~aD
10!. ~106!

By comparison of Eq.~102! and Eqs.~104!–~106!, it is evi-
dent that MSHOT-3 reduces the offset dependence by t
orders of magnitude relative to MS. This finding is suppor
by Fig. 4, showing the exact coefficients for MS a
MSHOT-3 schemes as functions ofvD /v r f .

3. Finite rf pulse excitation for IÄ 3Õ2 quadrupolar nuclei
described in su(2)

A problem very often encountered in AHT based analy
cal descriptions of solid-state NMR experiments is that
magnitude of the external part of the Hamiltonian is n
separated by one or more orders of magnitude from the m
nitude of internal parts of the Hamiltonian. In such cases
is impossible to establish an interaction representation

FIG. 4. Graphical representation of the norm for the exactbT2,0

~MSHOT-3, dotted line!, bT2,2
~MS, solid line; MSHOT-3, dot-

dashed line!, andbT1,0
~MSHOT-3, dashed line! coefficients for the

residual dipolar coupling from homonuclear MS and MSHOT-3 d
coupling as a function ofvD /v r f .
02110
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ensures rapid convergence of the average Hamiltonian.
has motivated the introduction of analytical expressions
limiting cases, such as the ‘‘weak’’ and ‘‘strong’’ rf field
cases, while leaving the intermediate cases to numer
simulations. A typical example could be rf excitation in th
case of a powder of spinI .1/2 nuclei influenced by a stron
quadrupolar coupling interaction, which because of its ori
tation dependence scales from being much smaller to m
larger than the available rf field strength.

Addressing this specific example, we will demonstrate
use of the Cayley-Hamilton expansion to establish an ex
operator exponential for the propagator of anx-phase rf pulse
with amplitudev r f on an I 53/2 spin influenced by a qua
drupolar coupling interaction with amplitudevQ , as ex-
pressed by the Hamiltonian

H5v r f I x1vQ~3I z
22I 2!. ~107!

Such propagators can subsequently be concatenated an
effective Hamiltonian established with the EEHT formalis
~not shown!. Since both terms of the Hamiltonian are sym
metric with respect to them quantum number, the su~4! prob-
lem may conveniently be transformed into two su~2! prob-
lems using the similarity transformation@50#

AT5TAT†, T5F q 0 0 q

0 q q 0

0 2q q 0

2q 0 0 q

G ~108!

with q51/A2. Within this frameHT and the corresponding
propagator block diagonalize into two independent SU~2!
representations, allowing definition of

Hupper
T t5

v r f t

2
11A3v r f tI x1~6vQt2v r f t!I z ,

~109!

Hlower
T t52

v r f t

2
11A3v r f tI x2~6vQt1v r f t!I z ,

~110!

where the basis operatorsI x ,I z , and1 now belong to a two-
level system. Accordingly, the exponentials may readily
calculated using Eq.~17!, i.e.,

e2 iH upper
T t5e2 ivr f t/2S cosd212 i

sind2

d2
@A3v r f tI x

1~6vQt2v r f t!I z# D , ~111!

e2 iH lower
T t5eivr f t/2S cosd112 i

sind1

d1
@A3v r f tI x

2~6vQt1v r f t!I z# D ~112!

-
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with d65tA9vQ
2 1v r f

2 63vQv r f . These expressions are e
act and may be used for analytical and numerical evaluat
independently of the relative sizes ofv r f andvQ .

4. Heteronuclear coherence transfer described in su(4)

All heteronuclear NMR experiments are based on
transfer of magnetization or coherence from one nuclear
species to another, with the aim, e.g., of establishing co
lations between signals from directly bonded heteronuc
This may be accomplished by in-phase transfers of the t
I x→Sx , e.g., using refocused INEPT@43,44#. This experi-
ment is characterized by the propagator

U5e2 ip2I zSz/2e2 ip(I x1Sx)/2e2 ip2I zSz/2, ~113!

with the 2I zSz rotations accomplished byJ-coupling evolu-
tion with the precession period (t) for the first and third
propagators related to the heteronuclearJ coupling aspJt
5p/2.

In order to appreciate the overall effect of this pulse
quence element it may be relevant to calculate the effec
Hamiltonian. This may readily be accomplished using
su~4! formalism outlined in the previous section. First, t
eigenvalues ofX512U are found to be$12 i ,12 i ,11 i ,1
1 i %. Second, thegi coefficients are calculated using Eq
~A11!–~A14! in the Appendix, assuming that we have tw
pairs of identical eigenvalues in this case. This leads tog0
5p21, g15123p/2, g25(3p22)/4, andg352p/4, al-
lowing the effective Hamiltonian of the experiment to b
expressed as

2 iH e f ft5g011g1X1g2X21g3X3

52
ip

2
~ I x1Sx12I zSz12I ySy!. ~114!

5. Gates for quantum computing described in su(4)

Obviously, the EEHT formalism is not restricted to NM
and certainly not only to NMR pulse sequences aimed
molecular structure determination. It is well established t
coherent spectroscopy, and in particular NMR, may play
important role in the development of quantum computing.
a NMR implementation quantum gates may be realized us
pulse sequences that exploit internal nuclear spin interact
as well as external rf fields to tailor the Hamiltonian to
appropriate shape. It may, however, be difficult to seea pri-
ori which specific pulse sequences correspond to a partic
quantum gate and what are the functions on the level of
overall Hamiltonian and propagator. Such information m
readily be obtained using the analytical tools established
this paper. Specifically we address the fundamental c
trolled NOT ~CNOT! and SWAP gates operating on four-leve
systems. Before proceeding to these examples, we sh
note that the relevant propagators in these cases have
determinant21, implying that they belong to the unitar
group U~4! rather than the special unitary group SU~4! ad-
dressed so far. In our context, however, this only gives
additional problem that it is possible to have four identic
eigenvalues different from zero for the propagator, which
02110
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not been accounted for in the formulas presented so far. In
other respects the formulas presented apply equally well
U~4!.

In NMR the controlled-NOT gate may be implemente
using the propagator@45#

UCNOT(IS)5e2 ip/4ei (p/2)I xei (p/2)I ze2 i (p/2)2I zSx

5F 1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

G , ~115!

which leads to

X512UCNOT(IS) ~116!

with the eigenvaluesl15l25l350, andl452. With three
degenerate eigenvalues, thegi coefficients for the effective
Hamiltonian may be established asg352 1

2 2 ip/8, g25 1
2 ,

g150, andg050 using Eqs.~A15!–~A18!. Equipped with
these the effective Hamiltonian may be derived as

ln ~UCNOT(IS)!5
1

2
X22S 1

2
1

ip

8 DX3

5 i
p

2 S I z1Sx22I zSx2
1

2
1D , ~117!

where the (ip/4)1 term can be neglected for practical pu
poses.

Similarly the effective Hamiltonian for the controlled-NOT

gateUCNOT(SI) defined as

UCNOT(SI)5ei ~p/4!e2 i (p/2)I ye2 i (p/2)(I z1Sz)ei (p/2)2I zSzei (p/2)I y

5F 1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

G ~118!

can be found. For this gate, the eigenvalues ofX51
2UCNOT(SI) are identical to those found in theUCNOT(IS)
case, implying that the entangled Hamiltonian may be
rived as

ln~UCNOT(SI)!5 i
p

2 S I x1Sz22I xSz2
1

2
1D . ~119!

From these two simple gates, the so-calledSWAP gate can be
constructed as

USWAP5UCNOT(SI)UCNOT(IS)UCNOT(SI)5F 1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

G .

~120!
8-14
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The eigenvalues and thereby thegi coefficients are identica
to those forCNOT~IS!. Thus, the effective Hamiltonian can b
found as

ln~USWAP!5g011g1X1g2X21g3X3

5 i
p

2 S 2SxI x12I ySy12SzI z2
1

2
1D , ~121!

which in NMR terminology corresponds to an isotropic mi
ing sequence@51# when we ignore the irrelevant term pro
portional to unity.

IV. CONCLUSION

In conclusion, we have presented a closed solution to
BCH problem which allows for exact description of the e
tanglement between two or more exponential operators
terms of the effective propagator and the effective Ham
tonian describing the overall evolution of the system. T
solution is based on the Cayley-Hamilton theorem, wh
enables translation of the typical infinite series expansi
for the exponential and logarithmic mappings into finite s
ries expansions containingn terms for then2-dimensional
Lie group, e.g., ann-level system. Addressing specifical
the special unitary groups, we have derived explicit formu
for SU~2!, SU~3!, and SU~4! in cases of nondegenerate a
degenerate eigenvalues. In these cases, it is typically fea
to determine the required eigenvalues for the individual a
concatenated propagators and establish relatively simple
act expressions for the entangled operators. These form
may be used directly for analytical evaluations, for numeri
simulations, or may in favorable cases be Taylor expande
provide impact-ordered expressions identical to those
tained earlier using infinite series expansion approaches

As demonstrated by several examples, the EEHT form
ism may represent an attractive alternative to the commo
used infinite series Magnus expansion based AHT
SCBCH formalisms, which have had their major use on tw
to four-level problems. As a distinct advantage the EE
02110
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formalism is exact and allows the analysis to be perform
directly in the laboratory frame without the need for comp
cating transformations into appropriate interaction fram
Thus the EEHT formalism spans the gap between the
proximate analytical and exact numerical descriptions of
used for evaluation and design of experimental method
coherent spectroscopy. Although the present paper ex
sively address examples within NMR spectroscopy, it is
visaged that the EEHT formalism through its general nat
may have a considerable potential for analytical/numer
analysis within other areas in chemistry and physics. In p
ticular, applications within optical spectroscopy, cohere
control, and quantum computing may be foreseen.
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APPENDIX

In this Appendix we will in condensed form give thegi
coefficients for the finite expansion of the entangled Ham
tonian in the su~3! and su~4! cases with degeneracy of eige
values.

In the su~3! case withl15l2, the ak andgi coefficients
may be expressed as

mak5~k12!l1
k132~k13!l1

k12l31l3
k13 , ~A1!

mbk52~k11!l1
k141~k13!l1

k12l3
222l1l3

k13 ,
~A2!

mck5~k11!l1
k14l32~k12!l1

k13l3
21l1

2l3
k13 , ~A3!

and
mg05
~l121!~2l12l3!l3ln~12l1!1l1@l3~l32l1!2~l121!l1ln~12l3!#

~12l1!
, ~A4!

mg15
l1

22l3
222~l121!l1ln~12l1!12~l121!l1ln~12l3!

~12l1!
, ~A5!

mg25
2l11l31~l121!ln~12l1!2~l121!ln~12l3!

~12l1!
~A6!
8-15
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usingm5(l12l3)(l22l3).
In the su~4! case withl15l2 degenerate eigenvalues th

coefficients may be written as

mg05
1

~12l1!
„l1~l12l3!l3~l12l4!~l32l4!l41~21

1l1!$l3l4~2l31l4!@3l1
21l3l422l1~l31l4!#

3 ln~12l1!1l1
2@~l12l4!2l4ln~12l3!2~l1

2l3!2l3ln~12l4!#%…, ~A7!

mg15
1

~12l1!
„2~l12l3!~l12l4!~l32l4!$l1

31~l2

2l3!~l22l4!2l1
2~11l31l4!1l1@2~l31l4!

1l2~2l21l31l4!#%1~211l1!l1@22l3
312l4

3

13l1~l32l4!~l31l4!ln~12l1!2~l12l4!2~l1

12l4!ln~12l3!1~l12l3!2~l112l3!ln~12l4!#…,

~A8!

mg25
21

2~12l1!
„~l12l3!~l12l4!~l32l4!$l1

31l2
2

22~l31l4!2l2~l31l4!2l1
2~11l31l4!

1l1@221l31l41l2~2l21l31l4!#%

12~211l1!$@2l3
313l1

2~l32l4!1l4
3# ln~12l1!

2~l12l4!2~2l11l4!ln~12l3!1~l12l3!2

3~2l11l3!ln~12l4!%…, ~A9!

mg35
1

3~l121!
„~l12l3!~l12l4!~l32l4!$31l1

31l2
2

2l2~l31l4!2l1
2~11l31l4!

1l1@l31l41l2~2l21l31l4!#%

13~211l1!~l32l4!~22l11l31l4!ln~12l1!

13~211l1!@~l12l4!2ln~12l3!

2~l12l3!2ln~12l4!#%, ~A10!

with m5(l12l3)(l12l4)(l22l3)(l22l4)(l32l4).
In the su~4! case withl15l2 andl35l4 degeneracy we

obtain

mg05
21

~l121!~l321!
„~l12l3!$2l1~l12l3!l3

3@~l121!l11~l321!l3#1~l121!~l321!

3@~3l12l3!l3
2ln~12l1!1l1

2~l123l3!ln~1

2l3!#%…, ~A11!
02110
mg15
21

~l121!~l321!
„~l12l3!$2l1

42l1
3~l321!

13l1
2l31l1~l323!l3

21~l321!l3
3

16~l121!l1~l321!l3~ ln~12l1!2 ln~12l3!#%…,

~A12!

mg25
21

~l121!~l321!
@~l12l3!$l1

2~2l123!

1~322l3!l3
313~l121!~l321!~l11l3!

3@ ln~12l3!2 ln~12l1!#%#, ~A13!

mg35
l12l3

~l121!~12l3!
$~l32l1!~l11l322!12~l121!

3~l321!@ ln~12l1!2 ln~12l3!#% ~A14!

with m5(l12l3)(l12l4)(l22l3)(l22l4).
Finally, in the su~4! case withl15l25l3 degeneracy we

obtain

mg05
21

2~l121!2
$2l1~l12l4!l4@l1~2415l123l4!

12l4#12~211l1!2@l4~3l1
223l1l41l4

2!

3 ln~12l1!2l1
3ln~12l4!#%, ~A15!

mg15
1

2~l121!2
„~l12l4!„2l1

414l1~l22l4!~l32l4!

12~l22l4!~2l31l4!2l1
3~914l4!1l1

2@22l2l3

12~l21l3!l413~21l4!#%16~211l1!2l1
2

3@ ln~12l1!2 ln~12l4!#…, ~A16!

mg25
1

2~l121!2
„~l12l4!$l1

422l1
3~11l4!1~l22l4!

3~2l31l4!1l1
2@92l2l31~41l21l3!l4#

1l1@2l2l322~l21l3!l423~21l4!#%

16~211l1!2l1@2 ln~12l1!1 ln~12l4!#…,

~A17!

mg35
1

6~l121!2
†~l12l4!„622l2l31l1$2914l2l3

12l1@~211l1!22l2l3#%13l4

22~211l1!2~2l12l22l3!l4…16~211l1!2

3 ln~12l1!26~211l1!2ln~12l4!‡ ~A18!

with m5(l12l4)(l22l4)(l32l4).
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