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Closed solution to the Baker-Campbell-Hausdorff problem: Exact effective Hamiltonian
theory for analysis of nuclear-magnetic-resonance experiments
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A closed solution to the Baker-Campbell-Hausdorff problem is described. The solution, which is based on
the Cayley-Hamilton theorem, allows the entanglement between exponential operators to be described by an
exact finite series expansion. Addressing specifically the special unitary Lie grog$,8U(3), and SU(4),
we derive expansion formulas for the entangled exponential operator as well as for the effective Hamiltonian
describing the net evolution of the quantum system. The capability of our so-called exact effective Hamiltonian
theory for analytical and numerical analysis is demonstrated by evaluation of multiple-pulse methods within
liquid- and solid-state nuclear-magnetic-resonance spectroscopy. The examples include composite pulses for
inversion, decoupling, and dipolar recoupling, as well as coherence-order- and spin-state-selective double- to
single-quantum conversion, homonuclear dipolar decoupling, finite rf excitation for quadrupolar nuclei, het-
eronuclear coherence transfer, and gates for quantum computation.
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[. INTRODUCTION concentrate the most important dynamics into the first few
orders. Under favorable conditions this may be accomplished
In many branches of modern physics, it is of substantiaby transforming the description into an appropriate interac-
interest to describe the effect of complex time-dependenfion frame, removing dominant terms from the external ma-
processes in terms of a single operator that is representativépulations not necessarily being important for evaluation
of the overall evolution of the system. The resulting operatoiPurposes. This strategy may be applied in several steps pro-
may provide direct physical insight into the evolution of the Vided the relevant parts of the Hamiltonian are sufficiently
system, which is useful for evaluation and systematic desig’€!l séparated in terms of magnitude. Unfortunately, how-
of complex experiments. Considering unitary evolution in€Ver: this does not cover the most general case where the
guantum physics as an attractive example, relevant, e.g., magmtudes of various of the .de.swed, undesired, relevant,
coherent spectroscofig—4] and quantum computing—7), an(_j irrelevant terms may be similar. An example gould .be
information about the effective Hamiltonian or propagatorsond's‘tate NMR of powder .samples, Where thg orientation
may require entanglement of the product of noncommutin dependence may scale the impact of anisotropic interactions

. . . . . €%:ontinuously from zero up to a size significantly larger than
exponential operators into a single unitary operator with the'Ehe available rf field strengths and sample spinning frequen-

. e . Ml r&ies[l?.—lﬂ. Another case could be rf irradiation subject to
derlying Hamiltonians, the effective Hamiltonian may be de-regonance offsets, which in cases relevant in practice may be

rived using the Baker-Campbell-HausdofCH) [8] or  |arger than the available or desired rf field strengths. Second,
Magnus[9] expansiorfor combinations of these, such as the eyen for quite simple experiments it may be difficult to cal-

semicontinuous BCHSCBCH expansiori10]] which allow  cylate the effective Hamiltonian to high order due to the
the entangled operator to be expressed in terms of an infinit€omplexity of the involved commutators along with the need
series of commutators between the operators subject to efor time-ordered integration which is complicated in cases of
tanglemen{11]. Through systematic ordering of the expan- discontinuous time dependenic]. In this context we note
sion elements of the effective Hamiltonian according to sizethat very often the most complicating time dependence is
entanglements of this tyd&0,12 have, for example, proved introduced by the transformation into an interaction frame
to be an indispensable tool for the evaluation and systematwith the aim of stimulating faster convergence. These com-
design of multiple-pulse experiments in nuclear-magneticplications are unfortunate considering the recognized value
resonance(NMR) spectroscopy ever since the pioneeringof high-order evaluations in systematic design of pulse se-
work by Haeberlen and Waudhi,12-17. quences that efficiently eliminate undesired components of
Despite its proven success, it is relevant to consider somthe internal Hamiltoniai10,16—23. Third, considering the
difficulties and limitations of effective Hamiltonian theory difficulties in achieving appropriate convergence and deriva-
based on the BCH, Magnus, and SCBCH expansions. Firstion of high-order terms of the effective Hamiltonian, it is
the quality and usefulness of the effective Hamiltonian criti-typical to assist the analytical evaluations by numerically
cally rely on the convergence of the commutator series t@xact calculations based on the Hamiltonian in the normal
rotating frame rather than in the interaction frame con-
structed to simplify the analytical evaluations. Although a
*Author to whom correspondence should be addressed. FAXmatch between the two descriptions may be obtained by per-
+45 86196199. Email address: ncn@imsb.au.dk forming the analytical evaluations stroboscopically at the
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points where the interaction and normal rotating frames coThis implies that it is possible to express matrigdsfor any
incide, this often leaves the scientist with an undesirable gapowerm=n in terms of the matrice$l,A, ... A"} with
between analytical formulas providing physical insight with coefficients determined by the characteristic polynomial.
low precision and digitalization and numerical simulationsThis result is of great interest for the decomposition in Eq.
providing high precision but no direct physical insight. (2), but also in more general terms considering the large
In this paper we address the above-mentioned problemsumber of mappings used in quantum physics which typi-
and introduce a closed solution to the BCH problem in thecally are characterized via their infinite power expansions.
normal rotating frame. The solution is based on the CayleyUsing the Cayley-Hamilton theorem these mappings may be
Hamilton theoreni26,27], which allows reformulation of the reduced to closed series of finite order. In the following sec-
infinite BCH expansion into a finite series expansion of ex-tions we shall take advantage of the expansion in(Bgto
ponential operators as recently demonstrated in relation texpress the exponential and logarithmic mappings in terms
the special unitarySU) and general lineaiGL) groups[28—  of the eigenvalues for the operators in their arguments.
31]. In this paper this analysis is extended to provide an Using Eg.(3), the matrix exponential in Eq1) may be
analytically exact description of the exponent to characterizeewritten ag 30]
the effective fields associated with the entangled operator. . - ) 5 I I
This forms the basis for our so-called exact effective Hamil- € =Xo(D) L+ iX1 () A=Xa() AT+ - - - +i"7 "Xy 1 (DA™,
tonian theory(EEHT). Furthermore, with specific formulas (5
derived for SW2), SU(3), and SW4), this work extends ear-
lier attempts using a related quaternion algebra formalis
[32] to describe the effective fields encountered in thé23U

where we explicitly emphasized the tinfer rotation angle,
rTEiepending on the units &) dependence in the exponential
to facilitate practical application typically involving dynami-

case|33,34. cal propagators. Under appropriate consideration of the mul-
tiplicity (m) of the eigenvaluesX) of iA, the coefficients
Il. THEORY take the form
In this section we derive the basic formulas required for Xj(t):ijl()\l,ml)e)\ltﬁ- . +ijn(;\n,mn)eknt_ (6)

analytical entanglement of the product of two exponential

operators as a finite power series depending on the exponerbe coefficients to the exponentials in E§) may be ex-
of the two operators. This involves expansion of the indi-pressed as

vidual exponential operators into a finite power series using

the Cayley-Hamilton theorem followed by coupling of the fii(Ni m)=aj;otad+--- +aj,i,mi—1tmi_l (7)
two series into an overall propagator. By expansion of the

logarithm to the entangled operator we derive the effectivevith the a;;  coefficients obtained by solution of the
Hamiltonian that is representative for the overall evolution. coupled equations

X0(0)=1,x5(0)=0,x5(0)=0, ... x" Y(0)=0,
A. Expansion of the exponential operator o(0) o(0) o(0) %o ©)

Confronted with the standard definition of the exponential X1(0)=0,x1(0)=1,x{(0)=0, ... ,x(ln_l)(O)zo, (8)
operator as an infinite series
o (IA)K
iA_ _
=2 D 4(0)=0x, 4(0)=0,x; 4(0)=0, ... x"" D(0)=1

fining the initial conditions for the problef30].

. . . e
and the interest in a closed solution to the BCH entanglemenq To illustrate the simplicity of the procedure for expansion

problem(8] of an exponential operator, we considgtx for a two-level
eiC— giAgiB @) system. The roots to the characteristic polynomialifqr,
- ) 1 10 1
it is desirable to establish an alternative definition of the p(\)=A2+i\Tr{l,}—detl,=\?+ 7 |x=§ 1 ol

exponential containing a finite number of terms. This may be ©)
accomplished using the Cayley-Hamilton theordi26],

which states that angxXn matrix A is a solution to its own  ay pe identified as the nondegenerate eigenvalyesi/2

characteristic polynomial, i.e., and \,=—i/2. Using the Cayley-Hamilton theorem, it is
, o1 straightforward to derive known identities of the ty[bé
P(A)=AT+Cy AT - - +C1 A+ CoI =0 (3 =1/4. With the eigenvalues established, the general expres-

. - i i sions for thex;(t) coefficients are
with the characteristic polynomial defined as _ _
Xo(t)=ag1e"*+ag,e” ",
p(A)=def A—A)=\"+c,_ A" 14+ ... +cN+cp.

(4 X (t)=ag 12" +a; e M2 (10
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Considering the initial conditions in E@8), the coefficients
need to bEB.O’LOZ aoyz’o:% andal'lyoz - a1’2'0= - i, Ieading
to
t}l Si s t
x=c0sz1+ 2i sinz
cos; sin

el (11

Ix

in agreement with previous findings based on an eigenvector

or infinite series approach.

B. Coupling of two exponential operators

Using the finite series expansion, it is possible to derive a

closed solution to the coupling of the two exponentials in Eq
(2) for which the traditional solution depends on an infinite
commutator series

eiAeiB = giA+iB[ABI2-i([A[AB]I+[[AB]B)/12+ - (1)

known as the BCH expansiof8]. Using Eg.(5) the en-
tanglement may be written

eheB=(xH1+ixPA—X5A%+ ..+ Ixh  ATTL)
X (xB1+ixBB—xBB?+ ... +i" " xB_,B" Y,
(13
A

with the definitions xg=x5(1), ... xh_;=x4_,(1) and
similarly for thex? coefficients. This expression has the ob-

vious advantage of being closed and thereby applicable fo
exact description of the quantum dynamics. With the numbe

of terms increasing by?, this advantage applies in particular
for smaller values of, where it proves possible to establish

quite simple expressions for the exponential product and th

exponeniC [cf. Eq.(2)]. We note that evaluation of the prod-
uct in Eq.(13) becomes particularly simple in cases whare
andB are related through a similarity transformation. In this
case the eigenvalues and thereby xheoefficients become
identical forA andB.

PHYSICAL REVIEW E 65 021108

A _siné
e =cossl+i T(axlx+ay|y+azl 2)- (17)
Finally, using Eq(14) we arrive at the closed expression for
the entanglement of two operators related through a similar-
ity transformation:

SitS

eelB={ cogs—
452

(axby+ayby+a,b,) 11

_sindcosés
+i T{(aﬁ b+ (ay+by)ly

_sits
+ (az+ bz)lz}_ I ?{(aybz_ azby) Iy

+ (aby—ab,)ly+ (aby—ayby)l}. (18

C. The entangled Hamiltonian

While the entangled propagator may be useful for obtain-
ing analytical formulas for the overall propagator and the
propagated density operator, physical insight into the effec-
tive fields of the experiment requires determination of the
exponent. Relying on the traditional BCH expansion, this
information may be obtained through the exponent in the
right-hand side of Eq.12). As above, however, this approach
has the distinct disadvantage of an infinite commutator series
(ﬁescription which in practice often calls for an undesirable
Eompromise between accuracy and complexity.

Using the Cayley-Hamilton theorem, it is possible to de-
rive a finite series description of the effective Hamiltonian.
®his may be achieved on the basis of the infinite expansion
of the logarithmic mapping

o 1
In(e"e'B)= —k§_‘,l Exk, (19

As an example, we address the coupling of two exponeng ...

tials in su(2) for which the exponents and B are related
through a similarity transformation. Using E@L3) with n
=1 andx;=x(1)=xB(1), this leads to

eheB=x21+ixox;(A+B)—x5AB, (14)

X=1-¢"eB, (20)

By expanding theX™ elements withm=n (n denotes the
dimension of the Lie algebra, or physically the number of
energy levels in terms of lower-order elements using the

which compares favorably with the infinite series approachcayley-Hamilton theorem followed by substitution of the ex-
in Eq. (12). Considering that su(2) is spanned by a threeponential product in Eq20) by the finite series expansion in
dimensional basis, full generality is maintained by consider£q. (13), the logarithmic function may be expanded as

ing propagators of the type

A= gi(axxraylyasly)  oiB_ gilbdxtbyly+byly).

e (15
The eigenvalues df(a,l+ayl,+a,l,) may be determined
as

. \/ax+ay+az

A== 5 ==+i4, (16

leading to the coefficientgy,=cosé and x,;=(sin )/, and
thereby

In(ee'B)=gol+g X+ ---+g, X" L. (21)

The g; coefficients may be determined from the eigenvalues
of X as described below for the cases of&y su(3), and
su(4).This provides the desired finite series expansion of the
effective Hamiltonian for the entangled operation, which
henceforth will be referred to as exact effective Hamiltonian
theory to emphasize its role as an exact alternative to the
very popular, but approximate, BCH expansion as well as
average Hamiltonian theorfAHT) so far used alone or in
combination with SCBCH to evaluate the effective fields of
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entangled operations. Finally, we should note that the anawhich upon insertion into E¢24) leads to the desired gen-

lytical expansions in Eq913) and (21) form an attractive

eral finite series expression for the effective field of the en-

alternative to a direct evaluation of their matrix representatangled operator.

tions, which typically will lead to much less transparent for-

mulas and will in addition to eigenvalues also require estab-

lishment of the eigenvectors for the operators involved.

1. The su(2) case
For a two-level system, the operatérmay be expanded
as

X2=aX+ byl (22

with the coefficients defined via the characteristic polyno-

mial to X,

P(N)=(N—=X1)(A=Np)=N?—agh —bg (23)

usingag=A1+\, and bg=—A;\,, with Ay and \, being
the eigenvalues oK. Thus, using Eqgs(13) and (20) we
obtain

In(e'"e'B)=gol+g,X
=(go+91) 1= g1(Xg1+iX7A) (X5 1 +ixEB).
(24)

The gi=g;(\1,\,) coefficients may be derived by com-
parison of the general expressions in E49) and(24). This
is most conveniently accomplished using
X?Ti=a,X+bl, (25)
which along with Eq.(22) leads to the recursion relations
a; 1=a;ap+b; and b;, ;=a;by with i>0. Equipped with
these definitions, Eq19) may be rewritten as

2

with g; and g, identified as the coefficients of and 1,
respectively. With the definitiom=2\,—\,, it can be shown
that the coefficients, andb, are subject to the relations

1
E k+2bk

. 1
iALIB _
In(e"e'®)= 1+k§:0k Zak

(26)

k+2

mag=»A; 7\|§+2

. mbe=— A2 NkT2)
(27)

Thus, using the definitions aof, and g, in Eq. (26), we
obtain

©

N2y, A a2

mgozgo k+2
= NoIn(L=Ap)+AgIN(1—\y), (28)
A2 \kr2
Mg =—{ (A +Zo k+2
—In(1—=Ay)—In(1—\y), (29)

2. The su(3) case
Using the same approach for a three-level system we ob-
tain

X3 =a; X%+ b;X+¢il (30)

W|th ao=)\1+)\2+)\3, boz_)\l)\z_
=N\1\o\ 3 defined via

NiA3—Nohg, and cg

PM)=(A=X)(A=Xp)(A=A3)=A3—agh?~boA —c,
(31)

and the coefficients for>0 determined by the recurrence
formulasa;, 1=ajagtb;, bj,1=ajby+¢;, andc; . ;=a;c,.

As in the su(2) case, the logarithmic function may be ex-
pressed by the expansions

In(ee'B)=ggl+ gy X+ g,X>

- %cﬁgl %ck 1
1+2 k+3
with the coefficients related to the eigenvalues<dby
ma=A1 "2 (A= Ag) A5 (g = A + X5 (=),
(33
mb =T33+ A3 (N2 N2+ AET3 (N3 \D),
(34)
MG=A1" (A3 g=Aoh3) + A3 (AA5=N{hg)
AT, - A0, (35
with m=(N1—N5)(A1—A3)(Ao—\3g). This allows theg; co-

efficients to be determined from E2), i.e.,

Mgo=(A3N3—A3A2)IN(1— X 1)+ (A3N;—A5Ng)In(1—)y)

+ (A 2= MAD)IN(1-\y), (36)

mgi=(A53—A3)IN(1=Xy)+(AZ=A3)In(1—1y)

+(A3—ADIN(1—N3), (37)
Mg,=(N—Az)IN(1—A1)+(Az3—Ap)IN(1—Ny)
+(N1—Ap)IN(1—N3), (38

which in combination with Eqs(13), (20), and(32) enable
expression of the effective field in an exact finite series ex-
pansion. This applies in the typical case with nondegenerate
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eigenvalues. The corresponding formulas applying for the

PHYSICAL REVIEW E 65 021108

IN(= N Ng) F A= Ng N +H AN p)]+In(2

special case where two of the three eigenvalues are degener-

ate are compiled in the Appendix.

3. The su(4) case

In a analogous manner, the su(4) expansion may be der'ng3=In(1—)\1)

rived using

X4 T=a; X3+ b; X2+ ¢; X+ d;1 (39)

with the coefficients related to the characteristic polynomial

P(N)=N*—agh3—boph2—coh —d, (40)

using ag=Ai+tAatA3t+tAs, bg=—N A=A A3— NNy
—Aoh3— Nohg—Aghg, Co=MA1AoN3+F NiAoh g+ N1Nghy
+NoNghg, do=—N{\oA3h,, as well asa;,;=a;ap+b;,
b;,1=ajby+c;, ¢ 1=ajco+d;, andd; ,,=a;d, for i>0.

AN NgF A FAI(— A +2g)
AN, (44)
[N(N3=Aa) +A5(Na=Ap) +N5(N o= Ag)]
FIN(L=N)[NF(—Ng+Ng)FNA(—NgFN\p)
FAL(= N1+ N ]HIN(L =N NF(Ao—Ny)
FAIN— N HFNA(— Ao+ A1) ]HIN(L—Ny)
XINZ(N3—Np) FA5(A1—Ng) +A5(— N1+ A2)] (45
using m=(A1—N2)(Ai—ANg)(AN1—Aa)(Aa—N3) (N2

—N\4)(N3—\,). Specific solutions for the three cases of de-
generate eigenvaluése.,\1=\,, A\1=N\5, andhz=A\,, and

The infinite and finite expansions for the logarithmic func-\1=X,=X\3 degenerationare given in the Appendix.

tions may be expressed as

In(eAe'B)=gyl+ g X+ gX2+ gaX3

o1 o1
:‘(20 ket “‘(“20 ke

X
k_
1 & 1
I . 2
2+k20 k+4bkx
I |
_ | = . 3
3+k20 73] X, (41)

D. General principles for experiment design revisited

The EEHT formalism may provide exact analytical in-
sight into the working of entangled operations, which may be
very useful for evaluation and systematic design of experi-
mental methods. In this regard the EEHT expansion may
serve as a powerful alternative to the commonly used BCH
and Magnus expansion based average Hamiltonian and
SCBCH methods. Thus, before proceeding to specific ex-
amples it appears relevant to comment on the relation of
design principles from these earlier methods to the exact for-
malism. These principles include in particular the so-called
2m+1 rule[10,21] and the use of reflection symmetric pulse

where theg; coefficients in the general nondegenerate casg@equence elements to eliminate all even of@&i terms in

take the form
Mgo=IN(1—A)[A3(— N34+ NgA D)+ A3(—NIN,+ A2\ ,)
FAI(— NN F AN THIN(L= N[ AN N3\D)
FASNAZNAD H NI NN THIN(L—\3)
XIAS(= N5+ NN + NS (= NG+ NINy)
FAFONS NN T+ IN[ 1= N )AF(— A A5+ AN ))
FASAING AN FASOAT-NND], (4D
Mg =IN(1=X)ASAF-AD NI AD NI —AD)]
FIN(L=ADAI(—NHAD FAS(—NG+AD)
FAFATADTHINL AN -N)
FAING=AD) NI NZHAD]+IN(L—Ny)
XININZ=N2) NS AD)+A3(—NF+23)], (43
Mg=IN(1=X)[A3(—A3+Ng) FAF(—Ag+Ny)
FAG(— A2+ N3)]+IN(L=N)[AI(A3—Ny)
A3 A1) AT~ Ag) ]+ IN(1-X3)

the effective Hamiltonian10,18,19.

The first thing to notice is, obviously, that the order con-
cept and accompanying convergence principles have no
meaning in relation to an exact expansion. It may, however,
be relevant to use the exact entanglement of two propagators
as an alternative to the SCBCH formulation in cases where
an ordered expansion exists for the individual operators.
Without looking at the details of the expansions, it is evident
that the same relations apply for the two formalisms inde-
pendently of the reference frame being an interaction frame
in the former case or the laboratory frame in the latter. This
follows from the interaction frame equation of motion

Y _ iAo a6
FT (46)

with the interaction frame propagatdd] related to the labo-
ratory frame propagatqt)) as

U=u-0, (47)

where U+ denotes a unitary propagator mediating transfor-
mation between the two frames. With the assumptionlthat

is exact and does not contain the interaction that we want to
find an order expansion for, any ordered expansion of the
Hamiltonian applying in the interaction frame applies
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equally well in the laboratory frame. This is ascribed to thedrupolar couplings. Finally, the su(4) case is demonstrated
fact that the coupling ofJ; and U, e.g., conducted by the by INEPT (i.e., insensitive nuclei enhanced by polarization
BCH expansion, will not change the original orderingln  transfey type heteronuclear coherence trang#8,44 and
with the consequence that then- 1 and reflection symme- 9ates for quantum computati¢as).

try principles can be adopted directly into the formalism de- At this point it is relevant to note that the overall proce-
scribed here. dure for establishment of the effective Hamiltonian, includ-

In more specific terms, therg+1 rule states that, if a 1Ng determination of the entangled operator and finding the
unitary transformatioe'® can be represented by an effective 9i coefficients from thex operator, may readily be imple-
Hamiltonian where the firstn orders vanish and this expo- Mented in  symbolic mathematics programs such as
nential is coupled with another propaga®¥ fulfiling the =~ MATHEMATICA [46].
same condition, then all terms of the effective Hamiltonian
up to order Zn+1 can be established by simple sums of A. Composite pulse sequence elements for two-level systems:
terms of the same order for the two blocks individually. To su(2)
qualitativ.ely identify this rule within the EE!—|T formalism, Considering that the following examples address off-
we consider .two propagators that are defined through thg.gonance compensation in composite pulses of the type
order expansions of the exponents 90,-180,-90, , 90,-180_,-270, 360,-360_, and
90_,-36Q,-270_,, which with one exception are all com-
posed of three rotations involving one or more.Q0ota-
tions, it proves useful to calculagepriori the influence of an
Pﬁset-perturbed propagator

QA= I HRt @B i3 HE (48)
with the assumption that(N=H{=...=HM=HIV =0,
Taking su(2) as a particularly simple case, it is evident tha
the operational part of the effective Hamiltonian for the en- U=e i@lxta,ly) (49)
tangled operation, as represented by &4), contains linear

A andB terms and bilineaAB terms. The former terms have on the three orthogonal basis operatiysl,, andl,. Here
nonvanishing terms only of order larger thart- 1 while the 3, may denote a nominal flip angle of the pulse, ea.,

latter have nonvanishing terms of order larger tham+22. = w4 7,p=72 with w, being the angular nutation fre-
quency of the rf pulse with a duration,, corresponding to
IIl. APPLICATIONS TO NMR SPECTROSCOPY a /2 rotation. Likewisea, may represent the offset rotation

angle depending on the resonance offset angular frequency

In this section we demonstrate how the EEHT formalism .) and the pulse duration, e.@,=w,7,s,. The transfor-
may be applied to analyze pulse sequences commonly us ations may be written

in liquid- and solid-state NMR. This involves the establish-
ment of analytically exact formulas, which may be used di-
rectly for numerical simulations and analytical evaluation, or
may be Taylor expanded to provide more easily accessible
physical insight. This is valuable for analysis of experimental
results, error analysis, and systematic design of optimum
pulse sequences for practical applications. The first series of
examples address composite pulses in the su(2) case with ] .
focus on inversion[36], so-called WALTZ decoupling With ai=sin(Jaj+aZ)/Vai+a;, a,=sin(Jai+az/2)/
[17,37], and chemical shift truncation in the basic building vax+a;, andqs=cos(ya;+ay).

blocks of the sevenfold-symmetric B8] and the more These relations will be used extensively in the following
recent permuation offset stabilized @DST-C7 [24] pulse ~ since they reduce the entanglements to coupling of two
sequences proposed for dipolar recoupling in solid-stat@ropagators followed by a similarity transformation of the
NMR. The second series of examples address pulse s&pe given in Egs.(50—(52). The latter is possible since
quences for pairs of spins 1/2 leading to a four-level systenye—iH7yt=g-1UHU'7,

which may be analyzed directly in su(4) or in many practi-

cally relevant cases transformed into a su(2) or su(3) de- 1. A composite inversion pulse

scription in a coupled representation. Thus, the first two ex- . Jecqt dependence of tH@;,=90,-180,-90, com-

amples, (i) INADEQUATE CR [39-41 (i.e., incredible . - .
natural abundance double quantum transfer composite refcg)—OSIte inversion pulse may be analyzed using the propagator

ULU™=(1-2a2g3)l,+a,a:1y+ 288,31,  (50)
UlyUT:_azq1|x+q3|y+axq1|21 (51

Ul UT=2a,a,03l —a,qsly+(1-aZgd)l,, (52

cusing pulse sequence for coherence-order and spin-state e (7 +23,1 )2g—i(mly + 23l ) =i+ 23, )12
selective (COY conversion of double-quantum coherence A A
into single-quantum coherence ar@d) magic-sandwich =Ue (myr2l)g i(mht2al)y T (53

(MS) [42] and the high-order-truncating MSHOT{22,23

pulse sequences for homonuclear dipolar decoupling, botwith U defined in Eq.(49) usinga,= 7/2 anda, related to
concern s(3). Thedecomposition of a su(4) problem into the resonance offset and the rf field strengtrags wy7,/»
two su(2) problems is addressed by analysis of the effect of w,7/(2w,s). Here and henceforth the subscripts to the
finite rf pulses on spih=3/2 nuclei influenced by large qua- pulse sequence elemer@isand the Hamiltonians reflect the
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pulses involved in units ofr/2 flip angles and with roman
and italic numbers indicating the and y phases, respec-
tively.

With n=2 the two central exponential operators in Eq.

(53) may be evaluated using Eq%)—(8),

e (Mot 2ald=c 1 —i2s, (7l +2a,l,), (54)

where q=x,y, s;=sin(y4aZ+ w?/2)/\4a5+=?, and c,
= cos(\/4a22+ 2/2). This allowsX for the two-pulse element
to be expressed as

X=1]— e—i('n’|y+2aZ|Z)e—i(7T|X+ZaZIZ)
=(8aZ+ m)stl+im(4a,si+sy)(1,+1y)

+i(—2ms2+4a,5,)l, (55)

with s,=sin(y4as+ 72)/\J4aZ+ 7. Using this expression
the eigenvalues oK may be calculated as

A=(8a’+m?)s?

1
ii\/— 27(4a,57+5,) %~ 4(mPsi—2a,5,)?, (56)

which may be inserted into Eq&28) and(29) to obtain the
go and g, coefficients for the entangled effective Hamil-
tonian:

—iH 22“7'277: |n(e7i("|y+2az|z)e7i("|x+2az|z)) — go]‘F ng,

(57)

of the offset-perturbed 1§@L80Q, pulse sequence element
(19,=27lw,). Finally, using Eq(53) the effective Hamil-
tonian for the 90-180,-90, composite pulse may be written

—IHS 72, = 0ol + g1 UXUT= b2 o+ b2+ b3,
(58)

PHYSICAL REVIEW E 65 021108

i 2i(4—m)a’ . i(96— 287+ 4m%+ 7l)as

y a2 27

2i (488150 —67°—37°)ad

370

+0(ad), (60

2i(—8+67+72)al

773

bl?'= —2ja,+

i(160— 607+ 672+ 7o) as
+

77_5

4i(968— 3427+ 217%+ 373+ w)al

37’

+0(ad).

(61)

The effective Hamiltonian may be compared directly with
the Hamiltonian of a standard 18version pulse

—iHS" = —i(7l,+2a,l)), (62)

either directly from the formula or graphically as in Fig. 1. In
the graphical representation, the exact valuels,ofb, , and

b, for the effective rotation angles of the pulse are plotted
directly againstw,/w,; = 2a,/4 or in a normalized fashion

in a three-dimensiondBD) spherical plot. We note that the
coefficients of the effective Hamiltoniamather than the ef-
fective rotation may be obtained by scaling with the inverse
pulse duration, which effectively halves the coefficients of
the composite pulse relative to the single-pulse case. In all
representations, it is evident that the improved off-resonance
compensation for the desired, rotation is obtained by re-
duction of thel, contribution to the effective Hamiltonian.
This is achieved at the expense of the introduction of a sym-
metricl, rotation and an antisymmetric destructive contribu-
tion to thel, rotation. For small off-resonance effects these
contributions are not problematic since phase errors do not
influence the inverted signal component.

2. AWALTZ decoupling element
The propagator for the WALTZ-type&,53=90,-180_,

where the coefficients readily may be established using Eqs. 27g_element17,37 may be written

(50—(52).
Although Eq.(58) gives a relatively simple and analyti-

cally exact expression for the effective Hamiltonian of the
composite pulse, it may be useful to extract physical insight

from a standard Taylor expansion arouag= 0, which up to
eighth order leads to

i(4+m)a2 . i(32— 167+ 7?)al
4

121
bt =——— -
2i(480- 1927+ 277%+ 673+ w*)ad

30 +0(ad),
ko

(59

e il +2a,0 )2 —i(— ml,+ 28,1 ) o =i(37,+ 68,1 )2
=Ue (- 7ht28)g-i@mly 42l )y T (63)
for which we derive
e 10Tt ) = ¢ 14125, (7l — 2a,l,), (64)
e 1Cmhxt4add = (2c2—1)1—is,(27l +4a,l,) (65
using Eqgs.(5)—(8). This leads to
xzjl_efi(fﬂ-lX+Zazlz)efi(2ﬂ-lx+4azlz):(1_ 772C2—4a503)Jl

+2imsy |+ 8ia,ms,S,l +4ia,ssl, (66)

021108-7



THOMAS S. UNTIDT AND NIELS CHR. NIELSEN PHYSICAL REVIEW B55 021108

-, - Iy
-\\\ /’/
~ g e
~ I 4 __’_/”
‘o . ,
'~ W/ O I
(a)—l.S -1 -0.5 "~ 0.5 1 1.5
-2 ~.
. FIG. 1. Graphs showing the
—q T~ offset dependence for thg coef-
> Ix ficients of the effective Hamil-
tonian —iHerm=byl+byly
e B ~ Ie +b,l,, for the (8 180, (b
yy '\\ =a;,7=1,), (b) 90,-180,-90, (7
Py 2 \ =75,), and (c) 90,-180_,-270,
. 1 PN (r=r3,) inversion pulses. The
b ,'/ QS ;s ) I, solid, dashed, and dot-dashed
( )_1\5 -1° -0.5 N 0.5/ 1 1.5 lines (left column represent the
Nt “1p Y- , - imaginary components df,, by,
N - P and b,, respectively, while the
\\ // dotted line represents the norm
e Iy [bl=Tb,J?+[b,[*+]b>.  The
spherical trajectorieg(right col-
\ . 7 Ix umn) represent the_lmagmary part
. L . 4 of b; /|b| as a function ofw, /w,¢
T e ranging from—1.5 to 1.5.
\ - - > 2
v N\
- )‘ N
N PERERENN I,
(C)—l.S -1 -0.5 > _05" >, L5 | |
\ N~
/—\_2 AN P -\
-4 Iy
for the two-pulse element using,=c,/(4a2+ 7?), c; > . gia® 2i(52+7d)a’ 8i(—134+7m?)a’
= cos(3/4az+ w2/2)/(4a2+ =?), and s byT=-dia,+ —+ 2 + S
T o o
=sin(3\4a>+ w%/2)/\/4a>+ 7. The eigenvalues foX are
+0(ad) (70)

A=1-4a’c;—cpm?+ \/— w?s2(1+ 16a2s2) — 4a’s?,
4i(4+mad 20ia3

6 _

©7 bl#=—2ia,+ . .
which allows straightforward calculation gf, andg, using ™ ™
Egs. (28) and (29). The effective Hamiltonian of th€,5;
WALTZ element may be expressed as

2i(1056+ 60+ 7%)a]

370

+0(ab (70

A

_iHififg,Tsw:U |n(e—i(—wlX+2azlz)e—i(2w|x+4az|z))u‘r _ _ _
_ _ _ resulting from an eighth order Taylor expansion of E&B).
=gol+g;UXUT=b1Z| + b;23|y+ bl%, On the basis of these formulas, it is straightforward to
rationalize why the WALTZ element is more compensated
68 \ith respect to off-resonance effects than the composite
pulse(and the standara pulse described above. The effec-
) L , tive Hamiltonian of the composite pulse contains,aom-
The analytical expression in E(S8) may readily be ex ponent which is linearly dependent on the offset ant, a

panded using Eqg50)—(52) to provide exact formulas for : ; K
numerical simulations and analytical evaluations. It may al.component with a quadratic offset c_iepende_nce. 'I_'h|_s implies
. : . . - that even for small offsets the effective rotation axis is turned
ternatively be instructive to examine the coefficients .
away from the transverse plane towdrdwith the result of

decreasing inversion capacity. For WALTZ, the undesired

with 73, = 37/ w,; .

_ a2 o4 i 6
b1 i, 8ia; 8ia, N 8i(—44+5m)a, +0(a%) longitudinal component is still linearly dependent on the off-
X T w2 o 2 set but this is partly compensated by an even more dominant
(69 linear contribution td . The latter component, though being
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qrthogonal to the desireld rotation, tends to keep the t_affec— — 16a§ i48a§ i32(— 15+ 47r2)aZ
tive rotation axis close to the transverse plane, leading to a bs4= 5 T+ 5
more broadbanded inversion. This aspect is clearly evident ™ ™ 3m

from the 3D plots in Fig. 1 comparing the imaginary part of

the normalized b;/+/|by/*+|b,|*+[b,|* coefficients (
=X,Y,z) for the three discussed inversion pulses.

3. C7 and POST-C7 dipolar recoupling elements

i16(— 35+ 247%)a’

77_8

+0(al?). (79

We note that by insertion &,= 7w, /(2w,s) and scaling by

To proceed with a solid-state NMR example, we consideri7s,) "' the low-order components are identical to those
the C,7 and Cy3 building blocks of the C7[38] and obtained earlier to fourth ordg¢24] using the SCBCH ex-
POST-C7[24] pulse sequences, respectively, used for broadpansion[10]. This demonstrates the general feature that
band y-encoded[47] dipolar recoupling in magic-angle- EEHT followed by a straightforward Taylor expansion may
spinning NMR. These elements serve to eliminate undesireBrovide an easy route to high-order evaluations, which may
effects from resonance offsets while allowing dipolar recoue quite tedious to establish using commutator based expan-
pling upon concatenation into a C7 multiple-pulse Cyc|e_Si0nS such as SCBCH, potentially in combination with the
Thus, to illustrate how the EEHT formalism can be used inhigh-order Magnus expansion formula of Bialynicki-Birula

systematic design of sequences with efficient offset comperft al. [48].

sation we calculate analytically the effective Hamiltonians
for the C,, C,4, andCi,3 elements in s) followed by a

comparative evaluation.
For the basicC,= 360, building block the propagatdEq.

Recently, we demonstrated that the off-resonance com-
pensation may be improved considerably by replacing the
C,s element by the perturbed three-puls€i,3
=90_,-360-270_, element leading to the POST-C7 se-

(17)] and the effective Hamiltonian are straightforwardly de-quence[24]. The advantage of this replacement appears di-

rived as
e 1(F2mhtaadd = ¢, 1+is,(= 2wl +4a,l,), (72

—iHE"r = —i(27l+4a,l,) (73)

with sy=sin(\4as+ w?)/J4ai+ =? and C4
= cos(/4aZ+ 72). Using Eq.(18) for the C,7=2360,-360_,

element we obtain
X=1—e 127Ix+48,l ) g=i(=2mI+4a,l)
=8a’sil—8ia,msjl,+8ia,S,Cyl , . (74)

The eigenvalues foX are given by

\=8a%s;+4a,s,\— ms;—Cj, (79

which defines thgg andg, coefficientd Eqgs.(28) and(29)]
for the effective Hamiltonian

—iH =gl g X=bi4,+ b4, (76)
with

b;‘,“z —8ia,7s30;, szJ: 8ia;54C491, (77

rectly from the formulas given above, which reveal that the
prefactor to the dominart, term is associated with an offset
dependence that is two orders of magnitude larger than that
for the dominant, term. Considering that the longitudinal
components are not eliminated by theotations involved in
the sevenfold symmetric C7 pulse sequef24,3§, it may
be beneficial to interchange the and |, terms by a—90°
x-phase rotation of the above propagator or a permutation
leading to theC7,3 sequence elemer{t\e note that the even
more intuitive —90° y-phase rotation, which would allow
elimination of bothl, and I, components, is unattractive
since it changes the scaling factor of the dipolar interaction
to a very low value. In practice, this operation is also influ-
enced by off-resonance effects, implying that the propagators
for the two pulse sequence elements are related through
UT4§:UPU4ZU-|I-3. UP:e—i[—('n'/Z)lx+aZ|Z]. (80)
Thus, theC1,3 POST-C7 element may be characterized by
the effective Hamiltonian

. g eff _ eff |+
- IHT4ET47T_ UpH44 UPT47T

= gol+0;UpX UL =31, + 143+ b3,
(81)

which may readily be expanded using tkeeigenvalues for
the C,; element and the transformation formulas in Egs.

andr,,=4/ w,; . The robustness of the,; pulse sequence (50)—(52).
element toward resonance offsets may alternatively be evalu- The Taylor expanded coefficients

ated to high order using the Taylor expansions

7 13287 192] i32(—87+47)a;
y 77_3 7T5 3,”,7

+0(ad),
(78)

vl —32a; 32(7+m)ag | B4(-57—12m+ 4m?)ad
X 773 77_5 3777
+0(ad9), (82)
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bﬂg:leiaf_80a§_8i(—132+7w2)a§ AN 3
Y 2 * 3 \\ 2
BN 1
8i(—558+1137%)a; ) . /Oy
+ ; +0(a%), (83 (@) T =03 = i
37 -1 \.\\ s
\“
—= —16(4+ma’ 64i(7+2m)a; 2 »
b143= ( 7T)az ( W)az -3 N\
z 4 6 h
a K
8i(—912— 2827+ 6472+ 57°)a)
+ Z+0(al’

378

(84

clearly reveal the improved broadband behavior of the per-
muted element, since the longitudinal component now de-
pends on the offset to fifth order rather than third order as
was the case for the origin&l,; element. It is also evident
that this improvement is achieved at the expense of increased
offset dependence dm andb,, which, however, is unprob- ! 5
lematic since these components are eliminated to high order \
by the C7 supercycle. These aspects become clearly evident \ 4
from Fig. 2 showing theb; coefficients as functions of the \ /
offset parametew,/w,s=2a,/7. Comparison of the plots \ 3
for C7 and POST-C7 clearly demonstrates the change of the
residual offset dependence of the effective Hamiltonian from \ /
being longitudinal dominated to being transverse dominated ~. 0 P
and thereby amenable twrotational decoupling upon con- (C) 1 ) -
catenation into the C7 supercycle.
As stated earlier, one of the most powerful strategies in \ ;
the design of pulse sequences with improved error compen- \
sation is to concatenate symmetry related elements to form N : /.
reflection symmetric pulse sequences that eliminate all even ‘ '
order terms in the effective Hamiltonian. This effect follows N P
directly from the AHT formalism and, as discussed above, N \\ 7/
also the EEHT formalism. To give a practical example, it N 05 77
may be relevant to ask the following question: Based on N s
EEHT, why is theC 45 element more offset compensated than (d) e o —55 1
the C4, element and what is the origin of this? From the
EEHT analysis it is evident that thg contribution fromX FIG. 2. Graphical representation @ the imaginary part ob,,
amounts to 8,s,c, for both sequence elemenfisee Eq.  (b) the transverse normy[b,[?+[b,[?, (c) the exact—g; coeffi-
(77)]. This implies that the different offset compensation hascients, andd) the norm of the eigenvalues for tih, (dashed ling
to be associated with differences in the coefficients. That ~Caa (dot-dashed ling andCy,z (solid line) elements of the C7 and
this indeed is the case appears clearly from Fig), Zhow- POST-C7 dlpolar_reco_upllng_ pulse sequences. It is notedGhat
ing significantly smalleg; values forC,; than forC,,. This ~ @ndCig behave identically irc) and (d).
is, obviously, related to differences in the eigenvalues for the
relevantX operators that determirgg . For C,, the eigenval-
ues are closer to zero as compared v@th as can be seen
from Fig. 2d).

for two-spin-1/2 and single-spin-3/2 four-level systems, we
address five examples, among which the three first upon ap-
propriate transformation may be analyzed ii2wor su3),

while the latter two require analysis in (gL
B. Four-level problems analyzed in si2), su(3), and su4)

Obviously, NMR pulse sequences are not restricted to thel- COMPosite INADEQUATE CR refocusing described in su(3)
simple s2) single-spin-1/2 case although a large number of As the first example, we demonstrate how the effective
sequences, for example, used for excitation, inversion, anfield of a quite complex spin-pair liquid-state NMR experi-
decoupling, may be described within this system. To demonment may be described using EEHT. Specifically, we con-
strate the power of the EEHT approach for deriving exacsider the coherence- and spin-state-selective (@8uble-
finite series descriptions of the propagators and Hamiltoniang single-quantum transfer mixing sequence of the most re-
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w2 = LE ™ w2 Thus, using Eq(5) the three relevant exponential opera-
| T H T T H T I tors may be written as
@ ey v 8 -y y
” _ 3+3 \F
i0m(21yS,+21,8,) — -
w2 2 m w2 € ’ 6 1 3(2|y52+2|15y)
21 1t 1t 21 1
® — = Sy p— Y 89
y oox Xy 3 xSxs (89
T 1. T 1. 11 . 24\3 |
(c) * ' 3 1 im(21,Sy+21,S,)/6 __
¢ $=0 o=2m3 O =43 € ’ 4 ! 2(2|XS>’+2|VS")
FIG. 3. Timing schemes for th@ INADEQUATE CR mixing 1
[r=1/(4)) and ¢=26,+ /2 with 6,=tan 2], (b) MS [7 _5(2_@)2'&' (90)
=7/(2w,)], and (c) MSHOT-3 pulse sequences. For MSHOT-3
the basic building block is the MS sequence; however, the phase of 34 \/5 5 1
the rf field is shifted in each individual block according to the value  ig,(1,+s))_ ; \ﬁ I P
of &, e'“mlly 6 1+i 3(IerSy) 1 \/§ 21,S,,
(91

cent variant of the liquid-state NMR INADEQUATE CR ex-
perimentFig. 3@)] [39,40, derived using analytical unitary which through multiplication gives a closed analytical ex-
bounds on quantum dynamif41]. For this experiment we pression for the propagator of the INADEQUATE CR ex-
need to couple three exponential operators constituting thperiment in the Zeeman base.
overall propagator for the mixing sequeri@] To find the effective Hamiltonian for the full mixing se-
quence, we shall further need
Ucr= gl Im(21yS;+21,8)) @ =i m(21,8y +21,8)/6gi Om(1y+S,)
(85) X: 1_ UCR

where 6,=tan 1\2. This is most conveniently accom-
plished in a symmetrized basis reflecting invariance toward

1 i 1
=51- —§(|y+sy)+ S(1+S) +1Sc+1,S,
permutation of the two spingt0,49 obtained using

—iV2(1,8,+1,8)), (92
1 0 0 O
0gqg q O X2=—iV2(1,+S,+21,5,+21,S,). (93)
AYP=TAT!, T= . (86)
c o0 0 1 The eigenvalues oX in su3) may be calculated to bf,1
0 g —qo0 —i,1+i}, which using Eqs(36)—(38) leads togy=0, g;

=0, andg,= — /4.
whereq=1/\2 andT represents the unitary transformation ~ Upon insertion into Eq(21) extended to coupling of three
relating the standard Zeeman and the symmetrized base. piopagators, we find the following effective Hamiltonian for
this so-called strong-coupling basis, the relevant mixing prothe INADEQUATE CR mixing sequence:
cess may be treated as a3uproblem[40].

As before, the first step is to establish analytical expres- —iHe®7cgr=In(UcR)
sions for the individual exponential operators on the basis of
the eigenvalues for the exponent. The eigenvalues for —_ sz
i 0m(21,S,+21,S)) andi6(1,+S,) in su3) both equalo, 4
—i6y,1 6y}, leading to the expansion coefficients 2
a
=i (1y+8,+21,5+21,S)
B B \F 1 1 1
Xo—l, X1= §a—m, X2—0—2m 1_ﬁ . (87) 0 1 1 0
V27| -1 0 0 0
Likewise, the eigenvalues forim(21S,+21,S,)/6 are{0, =1 -1 0 0 ol (94)
—i7/6,iw/6}, leading to
0O 0 0 O
Xo=1 x1=§ Xp= — w (88)  Wherercg=1/ is the overall duration of the pulse sequence,
1 L 2 -

depending on the homonucledrcoupling required to ac-
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complish the bilinear rotations in E¢85). Using Eq.(86),  presses the dependency on the angular frequencies for the
this effective Hamiltonian is readily identified as a selectivedipolar coupling p) and the rf field amplitude. The homo-
T pulse, nu\?l_ear dipolar coupling Hamiltonian is defined &k,
) ) =\6wpT,o. The four propagators reflect free precession
(—iHeMreR™M=imly?, (95 under the influence dfl, an ideal ¢r/2), bracketing pulse
(a typical simplifying assumptiof42,22, which is not re-
quired but used to avoid excessively long expressicarsd
two nonideal 2r pulses of phas& and —x under the influ-
ence ofHp in accordance with Fig. ().
The individual propagators may be calculated using Egs.

) o o ) (5—(7), and the operatoX for the concatenated sequence
Using a similar approach, it is also straightforward to es-established as

tablish the effective Hamiltonians for the magic-sandwich

[42] and the higher-order truncating MSHOTE32] pulse 1 T

sequence$Figs. 3b) and 3c)] earlier proposed for homo- X=17U,UU.U5U2Us ©7

nuclear dipolar decoupling in solid-state NMR. L . .
For a homonuclear dipolar coupled two-spin-1/2 systemUpon. transformation into th_e coupled basis using &),

the action of the MS pulse sequence may be described by tﬁge eigenvalues foX are derived as

four propagators

influencing the two lowest energy levels in thgd3uwbase as
discussed in Ref40].

2. MS and MSHOT-3 homonuclear dipolar decoupling
described in su(3)

18a3s2 ¥ 3\2aps,\— 9a3 — 872 —9a3c,,

Ulze—iZaDy“ETzoy Uzze—iw(|y+3y)/2’ )\1:0, )\213: a2
Uy=e [27(1x+ S0 +4ap 8Tz, (98
U4:e—i[—2w(lx+sx)+4aD\«“€T2,d, (96) with the definitions a=\/9a2D+4772, s,=sinx, and c,

=cosx. With the eigenvalues determined, it is straightfor-
using the irreducible spherical tensor operatd,, ward to determine the effective Hamiltonian for the MS se-
=(2|ZSZ—IXSX—IySy)/\/€ and wherep=rmwp/(2w,;) €x-  quence using Eq32) and Eqs(36)—(39), i.e.,

. [A2IN(1—N3)—A2IN(1—No)]X—[N3In(1=X,)— Ny In(1—N3)]X?
—iH® = — xzzxs(xz—gxg) — 3 99

using TMS= 127=67/w,; . In terms of standard. irreduciple _— 2ﬁa?,5 243 —3i+ 4w)ag
spherical tensor operatof&2], the exact effective Hamil- by>= o 2
tonian takes the form 22 2m 32m
: 729 — 15 +4(9+4i 7) 7]al

—iH effTM s= b1M2§2szz+ b-|M2’S_ 2T2‘,2 (100) + 256776 D

with T, .,=31715, 6561105 + 47| —87+87(—9i+2m)}ad
+
8
b¥' s 8192
22 +0(al"). (102
_ —\2apa?[In(1-\y) —In(1-\y)Is,(iac,+27s,)
S.apa®\—9a3—8m2—9a3C,, " We note that the lowest-order terms are identical to those

(101) derived earlier using the SCBCH expans|di)].
As recently demonstrated, the decoupling performance of
MS MS & . the MS pulse sequence may be improved significantly by
and by ® =(—b7,’)" where * denotes complex conjuga- concatenating two phase alternated MS sequences or in prac-
tion. tice more efficiently by concatenating three MS sequences
While the exact expressions in Eq400 and (101) are  mutually phase shifted by 2/3, leading to the so-called
valuable for exact calculations, it is easier to extract physicaMSHOT-3 pulse sequence in Fig(c3 [22]. The rationale
insight into the decoupling performance by making a Taylorbehind these pulse sequences becomes evident from Eq.
expansion aroundp=0. To tenth order this leads to (100, revealing that the residual dipolar coupling terms are
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ensures rapid convergence of the average Hamiltonian. This
has motivated the introduction of analytical expressions in
limiting cases, such as the “weak” and “strong” rf field
cases, while leaving the intermediate cases to numerical
simulations. A typical example could be rf excitation in the
case of a powder of spin>1/2 nuclei influenced by a strong
quadrupolar coupling interaction, which because of its orien-
tation dependence scales from being much smaller to much
larger than the available rf field strength.

Addressing this specific example, we will demonstrate the
use of the Cayley-Hamilton expansion to establish an exact
operator exponential for the propagator ob@phase rf pulse
with amplitudew,s on anl=3/2 spin influenced by a qua-
drupolar coupling interaction with amplitudeq, as ex-
pressed by the Hamiltonian

FIG. 4. Graphical representation of the norm for the e*act
(MSHOT-3, dotted ling bT (MS, solid line; MSHOT-3, dot-
dashed ling ande (MSHOT 3, dashed linecoefficients for the

residual dipolar coupllng from homonuclear MS and MSHOT-3 de-

— 2_ 2
coupling as a function ofp /@, . H= ot o317 =17).

(107

Such propagators can subsequently be concatenated and the
effective Hamiltonian established with the EEHT formalism
(not shown. Since both terms of the Hamiltonian are sym-
metric with respect to thex quantum number, the 64) prob-

lem may conveniently be transformed into twoZuprob-

lems using the similarity transformatigf0]

proportional toT, ., and thereby may be eliminated by the
proposed rotations. More insight may be obtained using the
EEHT formalism, which based on the formulas derived for
the MS sequence leads to the following effective Hamil-
tonian for the MSHOT-3 sequence:

—iH®*""7yspors=bY SHOT'3T1,0+bMZVSO'-IOT-BTZ,O ¢ 0 0 q
| pMSHOTST | pMSHOTST 0 q 0
T2z EE S AT=TAT, T= (108
(103 0 -9 q0
- 0 O
with T,o=1,+S, and bMSgOT?’ (—bySMOT)* . In this a a

case the exact formulas are quite Iong, S0 we restrict oumith q=1/y2. Within this frameH™ and the corresponding
selves to presentation of the coefficients in a tenth order Taypropagator block diagonalize into two independent(BU
lor expansion aroundp=0, i.e., representations, allowing definition of

|729\/§ 19683\/—

MSHOT-3 _ T WrfT _
leo 3o D Y D +0(a DO) Hupper™= 5 —I1+ \Ew,frlx-}—(GwQT w75,
(104 (109
19683 + o7
b-'\rAZSZHOTg —Gj \/_) 2 +O(aD°) (105 HlowerT 2 — 1+ \/§wrf7'|x_(6wQT+ wi7)l 2,
i (110
s
b% OHOT3 O(ap). (106 where the basis operators,|,, andl now belong to a two-

level system. Accordingly, the exponentials may readily be

By comparison of Eq(102) and Eqs(104)—(106), it is evi-

calculated using Eq17), i.e.,

dent that MSHOT-3 reduces the offset dependence by three

orders of magnitude relative to MS. This finding is supported
by Fig. 4, showing the exact coefficients for MS and

MSHOT-3 schemes as functions @, / w,s .

3. Finite rf pulse excitation for | = 32 quadrupolar nuclei
described in su(2)

T . siné
e Mupper= e_""rfT/2< coso  I—i ?[ﬁw,f 7ly

+(6wgT— wrfr)lz]>, (111

A problem very often encountered in AHT based analyti-
cal descriptions of solid-state NMR experiments is that the
magnitude of the external part of the Hamiltonian is not
separated by one or more orders of magnitude from the mag-
nitude of internal parts of the Hamiltonian. In such cases, it
is impossible to establish an interaction representation that

T .
efIHIowerT: elwrfTIZ( C055+

—(BwgT+ w7)l z]) (112
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with 6* = 7\/9w§ + w?; + 3wqw,s. These expressions are ex- Not been accounted for in the formulas presented so far. In all
act and may be used for analytical and numerical evaluationgther respects the formulas presented apply equally well for

independently of the relative sizes f; and wg . U4).
In NMR the controlledNoT gate may be implemented
4. Heteronuclear coherence transfer described in su(4) using the propagatd#bs]

All heteronuclear NMR experiments are based on the
transfer of magnetization or coherence from one nuclear spin
species to another, with the aim, e.g., of establishing corre-
lations between signals from directly bonded heteronuclei.
This may be accomplished by in-phase transfers of the type —
I,—S,, e.g., using refocused INEP[B3,44. This experi-
ment is characterized by the propagator

Ucnoris)= o i Al (T12)l gl (m12)l ;0 —1(12)21 Sy

0

(115

=~ O O O
o » O O

o O O -

1
0
0

_ a—im21,S, 20— im(ly+ S) 12— i 721 ,S,12

U=e e imlha SR il (113 hich leads to
with the 2,S, rotations accomplished b§-coupling evolu-

tion with the precession periodr) for the first and third

propagators related to the heteronucléaroupling as7Jr with the eigenvalues; =\, =\3=0, and\ ;= 2. With three
= ml2. . . degenerate eigenvalues, thge coefficients for the effective

In order to appreciate the overall effect of this pulse S€Hamiltonian may be established gg=——im/8, g,= 1

guence element it may be relevant to calculate the eﬁectivs =0, andgy=0 using Eqs (A15)—(A18)2 Equipbeé wz|th

Hamiltonian. This may readily be accomplished using thethese the effective Hamiltonian may be derived as
su4) formalism outlined in the previous section. First, the

eigenvalues oX=1—-U are found to be1—i,1—i,1+i,1 1
+i}. Second, theg; coefficients are calculated using Egs. |n(UcNoT(|5))=§X2—
(A11)—(A14) in the Appendix, assuming that we have two

pairs of identical eigenvalues in this case. This leadggo T 1

=m—1, 9;=1-37/2, g,=(37—2)/4, andgs= — /4, al- =i 5( I +S—21,S— 511), (117
lowing the effective Hamiltonian of the experiment to be
expressed as

X=1=Ucnor(s) (116

1+i7TX
28

3

where the {(#/4)1 term can be neglected for practical pur-
—iH g s7=0ol + gy X+ g X2+ g3X3 POSES. . .
Meft™=0o1 T 912792+ 03 Similarly the effective Hamiltonian for the controlledsT
i gateUcnorsyy defined as
== (k+S+21,5+21,S). (1149

Ucnorsy= el (T g=i(m2)lya=i(m2)(1+S) g (1221 ;S;gi (m12)1

5. Gates for quantum computing described in su(4) 1 0 0 O
Obviously, the EEHT formalism is not restricted to NMR 0 0 0 1
and certainly not only to NMR pulse sequences aimed at = 00 1 0 (118
molecular structure determination. It is well established that
coherent spectroscopy, and in particular NMR, may play an 01 0O

important role in the development of quantum computing. In

a NMR implementation quantum gates may be realized usingan be found. For this gate, the eigenvalues o1
pulse sequences that exploit internal nuclear spin interactions Ucnot(s) are identical to those found in the cyorgs)

as well as external rf fields to tailor the Hamiltonian to ancase, implying that the entangled Hamiltonian may be de-

appropriate shape. It may, however, be difficult to aqai- rived as

ori which specific pulse sequences correspond to a particular 1

guantum gate and what are the functions on the level of the _.T _ L

overall Hamiltonian and propagator. Such information may In(Uenoresy) = 7|t S 2hS 5l (119

readily be obtained using the analytical tools established in

this paper. Specifically we address the fundamental conFrom these two simple gates, the so-calisehp gate can be
trolled NOT (CNOT) and SWAP gates operating on four-level constructed as

systems. Before proceeding to these examples, we should

note that the relevant propagators in these cases have the 1 0 0O
determinant—1, implying that they belong to the unitary 00 1 0
group U4) rather than the special unitary group @WJad- Uswar= UcnorsyYenoras)Ucenorsy = 01 0 ol
dressed so far. In our context, however, this only gives the

additional problem that it is possible to have four identical 0 0 0 1
eigenvalues different from zero for the propagator, which has (120
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The eigenvalues and thereby thecoefficients are identical formalism is exact and allows the analysis to be performed
to those forcNOT(IS). Thus, the effective Hamiltonian can be directly in the laboratory frame without the need for compli-

found as cating transformations into appropriate interaction frames.
Thus the EEHT formalism spans the gap between the ap-
IN(U syuap) = 9ol + g1 X+ g X2+ go X3 proximate analytical and exact numerical descriptions often

used for evaluation and design of experimental methods in
coherent spectroscopy. Although the present paper exclu-

—j m 250, +21,8,+2S,1,— 11 (121) sively address examples within NMR spectroscopy, it is en-

2 T 2 visaged that the EEHT formalism through its general nature

may have a considerable potential for analytical/numerical

o ] ) _ . analysis within other areas in chemistry and physics. In par-
which in NMR terminology corresponds to an isotropic mix- ticylar, applications within optical spectroscopy, coherent

ing _sequencéS;] when we ignore the irrelevant term pro- control, and quantum computing may be foreseen.
portional to unity.
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solution is based on the Cayley-Hamilton theorem, which APPENDIX

enables translation of the typical infinite series expansions

for the exponential and logarithmic mappings into finite se- In this Appendix we will in condensed form give tigg
ries expansions containing terms for then?-dimensional  coefficients for the finite expansion of the entangled Hamil-
Lie group, e.g., am-level system. Addressing specifically tonian in the s(8) and su4) cases with degeneracy of eigen-
the special unitary groups, we have derived explicit formulag/alues.

for SU(2), SU3), and SUW4) in cases of nondegenerate and  In the sy3) case with\;=\,, thea, andg; coefficients
degenerate eigenvalues. In these cases, it is typically feasibieay be expressed as

to determine the required eigenvalues for the individual and
concatenated propagators and establish relatively simple ex-
act expressions for the entangled operators. These formulas
may be used directly for analytical evaluations, for numerical
simulations, or may in favorable cases be Taylor expanded to
provide impact-ordered expressions identical to those ob-
tained earlier using infinite series expansion approaches.

As demonstrated by several examples, the EEHT formal-
ism may represent an attractive alternative to the commonly mee=(k+ AT — (k+2)MANZHAAK3 | (A3)
used infinite series Magnus expansion based AHT and
SCBCH formalisms, which have had their major use on two-
to four-level problems. As a distinct advantage the EEHTand

mac=(k+2)A5 3= (k+ 3N A +05"2, (A1)

mb=— (k+ DN (k+3)N A Z— 20 2 KF3,
(A2)

(M=) (2N 1= Nz)A3In(1=N1) + N[ Ag(Ag—N9) = (A= D)\ qIn(1—N3)]

Mo (T-x) / (A9
N2=A3—2(A1— DAIN(1—N1)+2(N 1= 1)A4In(1—X3)

mg; = (1_)\1) ' (AS)

—AFAz+ (A= D)IN(1=X)— (A —1)In(1—A3) A6)

M= W)
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usinng()\l—)\3)()\2—)\3). -

In the su4) case withh ;=\, degenerate eigenvalues the mgﬁm((?\l—)\s){—)\i‘—)\?(?\s— 1)
coefficients may be written as ! 3

+3NINg N (A3— 3NS5+ (Az— A3

mgozﬁ()\l()\l—)\3))\3()\1—)\4)()\3—)\4))\4+(— 1 +6(A— DA 1(Ag— DA5(IN(1=X 1) —In(1=\3g) 1),
FADINAA(— N3 N[BT+ Ngha— 2N 1 (N 3+ N y)] (A12)
XIN(L= A1)+ N = Na)2Aan(1—Ng)— (A mgzzm[(kl_xs){kg(le_g)
he)heln(L=A0 I, (A7) +(3=20g)A3+3(A 1= 1)(Ag— 1) (A1 +Ag)

mgﬁﬁ(—(M—As)(kl—7\4)(x3—>\4){xi+(>\2 X[In(1=Xg)=In(1=\p)]}], (A13)
—Ag)(Ao—Aa) = N3(L+Ag+Ng) +A1[2(N g+ N y) m%zﬁ{(xa—m(xﬁ Az—2)+2(A;—1)
N =N Az F A+ (= 1+ NN [ — 205+ 2A5 X (ha—1)[IN(L= A1) = IN(1—Ag) ]} (ALd)

+3N1(N3=Ng) (AT Ng)IN(L—=N1) = (N1 —Ng) %N With M= (A1 —Na) (A g = A2) (Ap—Aa) (g Na)
=M= A3) (A= Na) (A= Ag) (A= Ny).

F20)IN(1—=Ng)+(A1—A3)2(A1+2N3)In(1—Ny)]), Finally, in the s4) case with\;=\,=\3; degeneracy we
(A8) obtain
_1 Y 0 P V) WA DO G LS . Y
Wi LS WIS WITVERY: Mo=) )zt Mt halhadhal 17 3h4)
—2(Ngtha)— oA+ Na) = N2(L+ N5+ Ny) + 20 ]+ 2(— 1+ N ) N 4(BNT—3N A4 +0))
FA[— 24 NgH A g No(— Ao+ hg+ AT} XIn(1=Xp) = AiIn(1-Ng)1}, (A15)
+2(— 1N D[ A3+ 3N E (A= Ay +A3]IN(1—\y) 1
Mg =————((A1—N) @NF+ 4N (Ap—Ng)(Ag—\
(M= N)2(2N 1+ A IN(L—Ng)+ (A= N g)? o1 2()\1_1)2(( 17 Na) (2N} 1(N2=Ng)(N3—Ny)
X (2N1+Ng)In(1—=\ D), (A9)

+2(A o= Aa)(—NgFN) = A3(9+ 4N ) + N — 2\ )\ g
+2(N o+ Ag)hg+3(2+ N )} +6(—1+N1)2\2

Y o ~ _ 3\ 2
mg3—3()\1_1)(()\1 Na)(N1—=Na) (A3 A){3+NT+N; < [IN(L=N1)—In(1=Aa)]), (A16)

—Aa(A3HNg) =NE(1+ g+ Ay)

YIRS VESPIES PES VS WAL M&=75

W((M—M){A‘l‘—2x§(1+>\4)+()\2_)\4)
1

+3(— 14N ) (Ag=Aa) (= 2N 3+ g+ Ag)IN(1—N;)

X (—=NgH+Na) F A9 Nohg+ (44 No+ Ng)hy]
+3(—1+A)[(A1—Ng)?IN(1—\3)

FN1[2Noh 3= 2(Na+ N3)N = 3(2+ Ny ]}

O —ND2AN(1—
(A=A IN(L=Aa) 1, (A10) +6(—1+ )2y [~ In(1—=\y)+In(1—y)]),
with m= (A1 =N3)(A1=Ng) (N2—=A3) (A2—Ng) (N3—N4). (A17)
In the sy4) case withA ;=\, and\ 3=\, degeneracy we
obtain ! [Ny = Ng) (6= 2N A3+ N1 {— 9+ 4N\
mg=————[(\1— - +N,{—9+
B 93 6(h—1)2 17 Ng 2A3T A 2A3

Ulv e yrrwenr L (CERRE X R S SRR RS +2N1[(— 14N 1)2— Aok} + 30y

XN = DN+ (A= DAg]+ (A —1)(A3—1) —2(=1+ X321 A= Ag)hg)+6(— 14\ y)?
X[(BN1—Az)A3IN(1—N1)+A2(N;—3A3)In(1 XIN(1=X1)—6(—1+\1)IN(1—Ny)] (A18)
—\3)1}), (A1l)  with m=(A1=Ng)(N2—Ns)(A3—Ny).
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